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1. Introduction and statement of main result

The paper deals with a partial data inverse problem related to a convection-diffusion equation onMT :=
(0, T ) × M where 0 < T < ∞ and (M, g) is a smooth n−dimensional (n ≥ 2) Riemannian manifold
having smooth boundary ∂M . We denote by Σ := (0, T ) × ∂M as the lateral boundary of MT and
∂MT := Σ ∪ ({0} × M) ∪ ({T} × M) the topological boundary of MT . We also denote by TM and
T ∗M the tangent and cotangent bundle of M . For a convection term A ∈ W 1,∞ (MT ;T

∗M) given by

A(t, x) :=
n∑
j=1

Aj(t, x)dx
j in local coordinates x1, x2, . . . , xn of manifold M and density q ∈ L∞(MT ), the

initial boundary value problem (IBVP) for the convection-diffusion equation on MT is modeled by the
following IBVP for second order linear parabolic partial differential equation (PDE)

[
∂t −

n∑
j,k=1

1√
|g|

(
∂xj +Aj

)(√
|g|gjk (∂xk +Ak)

)
+ q

]
u(t, x) = 0, (t, x) ∈MT

u(0, x) = ϕ(x), x ∈M

u(t, x) = f(t, x), (t, x) ∈ Σ

(1.1)

where g−1 :=
((
gij

))
1≤i,j≤n denote the inverse of metric tensor g := ((gij))1≤i,j≤n, |g| = det(g) and the

initial value ϕ and the Dirichlet data f are assumed to be non-zero. Throughout this article, we denote by
LA,q the following operator

LA,q := ∂t −
n∑

j,k=1

1√
|g|

(
∂xj +Aj(t, x)

)(√
|g|gjk (∂xk +Ak(t, x))

)
+ q(t, x). (1.2)

In this paper, we are interested in determining the convection term A and density coefficient q from the
boundary measurements of the solution. To define the boundary operators, we need to have the existence
and uniqueness of a solution to the forward problem for IBVP given by (1.1).
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Motivated by [15, 49], we define the following spaces

K0 := {(f |t=0, f |Σ) : f ∈ H1(0, T,H−1(M)) ∩ L2(0, T ;H1(M))} and

KT := {(f |t=T , f |Σ) : f ∈ H1(MT )}

where we refer to [25] for the definition of function spaces Hm(0, T ;Hk(M)), for k,m ∈ R. Now for
(ϕ, f) ∈ K0, it can be shown by following arguments from [15, 25, 43] that there exists a unique solution
u ∈ H1(0, T,H−1(M))∩L2(0, T ;H1(M)) of IBVP (1.1). Based on the existence and uniqueness of solution
and following [15, 40, 49], we observe that for any solution u ∈ H1(0, T,H−1(M)) ∩ L2(0, T ;H1(M)) the
operator NA,qu given by

⟨NA,qu,w|∂M∗
T
⟩ :=

∫
MT

(
−u∂tw + ⟨∇gu,∇gw⟩g + 2u⟨A,∇gw⟩g + (δgA)uw − |A|2guw + quw

)
dVgdt

−
∫
M
u(0, x)w(0, x)dVg

is well-defined for all w ∈ H1(MT ) where ∂M
∗
T := ({T}×M)∪Σ. Now if we assume the sufficient regularity

on the coefficients A, q and Dirichlet data f , then as shown in [15] the operator NA,qu is given by

NA,qu :=
(
u|t=T ,

[
∂νu(t, x) + 2⟨ν,A⟩g(t, x)u(t, x)

]∣∣∣
Σ

)
where ν stands for the outward unit normal vector to ∂M and u solves the IBVP given by (1.1). This
motivates us to define our input-output operator ΛA,q : K0 → K∗

T by

ΛA,q(ϕ, f) := NA,qu (1.3)

where K∗
T stands for dual of KT and u is solution to the IBVP (1.1) when the initial data is ϕ and Dirichlet

boundary data equal to f .
This work is concerned with the determination of time-dependent coefficients A and q appearing in (1.1)

using the measurements of the input-output operator ΛA,q on a proper subset of Σ for the case when (M, g)
is an admissible manifold whereby an admissible manifold, we mean the following.

Definition 1.1. (Admissible manifold [11, 29]) We say that a compact Riemannian manifold (M, g) of
dimension n ≥ 2 with boundary ∂M , is admissible if M is orientable and (M, g) is a submanifold of
R× (int(M0), g0) where (M0, g0) is a compact, simply connected Riemannian manifold with boundary ∂M0

which is strictly convex in the sense of the second fundamental form and M0 has no conjugate points.

Some examples of admissible manifolds are the following (for more examples, see [29]):

1. Bounded domains in Euclidean space.
2. Any bounded domain M in Rn, endowed with a metric which in some coordinates has the form

g(x1, x
′) =

(
1 0
0 g0(x

′)

)
,

is admissible.

The assumptions for admissible manifolds are applied in various contexts, such as selecting a limiting
Carleman weight, calculating Carleman estimates, proving the injectivity of the geodesic ray transform,
and in many other places.
In order to state the main result of this article, we first need to specify the subset of ∂M where the
measurements are given. Now if we write x ∈ M , as x := (x1, x

′) ∈ R×M0 and φ(x) := x1 then ∂M can
be decomposed into the two parts given by

∂M+ := {x ∈ ∂M : ∂νφ(x) > 0} and ∂M− := {x ∈ ∂M : ∂νφ(x) ≤ 0}
where ν(x) stands for outward unit normal to ∂M at x ∈ ∂M and ∂νφ denote the normal derivative of
φ with respect to the metric g. In this paper, we will be assuming that our boundary measurements are
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given on slightly bigger than half of ∂M . To specify this portion of ∂M , we take ϵ > 0 small enough and
define ∂M±,ϵ/2 by

∂M+,ϵ/2 :=
{
x ∈ ∂M : ∂νφ(x) ≥

ϵ

2

}
and ∂M−,ϵ/2 :=

{
x ∈ ∂M : ∂νφ(x) <

ϵ

2

}
(1.4)

as ∂M−,ϵ/2 is the small enough open neighborhood of ∂M−. We denote the corresponding lateral part of
Σ by Σ+ := (0, T )× ∂M+, Σ+,ϵ/2 := (0, T )× ∂M+,ϵ/2, Σ− := (0, T )× ∂M− and Σ−,ϵ/2 := (0, T )× ∂M−,ϵ/2.
We also denote ∂M∗

T± := ({T}×M)∪Σ± and ∂M∗
T±,ϵ/2

:= ({T}×M)∪Σ±,ϵ/2. Now, using these notations,

we define the partial input-output operator by

ΛpartialA,q

(
ϕ, f

)
:= NA,qu|∂M∗

T−,ϵ/2
. (1.5)

Our aim in this article is to recover A and q uniquely from the knowledge of ΛpartialA,q however, due to gauge
invariance, it is impossible to recover these coefficients fully. Since this is the first work related to the
time-dependent convection-diffusion equation on manifolds therefore before stating the main result of this
paper, we first provide quick proof of the gauge invariance associated with our problem. In the Euclidean
setting, this has been well observed in prior works; see, for example, [15, 49] and references therein.

Definition 1.2. (Gauge Invariance) Let A(i) ∈W 1,∞(MT ) and qi ∈ L∞(MT ) for i = 1, 2. We say (A(1), q1)

and (A(2), q2) are gauge equivalent if there exists Ψ ∈W 2,∞
0 (MT ) such that

A(2)(t, x) = A(1)(t, x)−∇gΨ(t, x) and q2(t, x) = q1(t, x)− ∂tΨ(t, x), for (t, x) ∈MT .

Proposition 1.3. Suppose u1(t, x) is a solution to the following IBVP
[
∂t −

n∑
j,k=1

1√
|g|

(
∂xj +A

(1)
j

)(√
|g|gjk

(
∂xk +A

(1)
k

))
+ q1

]
u1(t, x) = 0, (t, x) ∈MT

u1(0, x) = ϕ(x), x ∈M

u1(t, x) = f(t, x), (t, x) ∈ Σ

(1.6)

and Ψ ∈W 2,∞
0 (MT ), then u2(t, x) = eΨ(t,x)u1(t, x) satisfies the following IBVP

[
∂t −

n∑
j,k=1

1√
|g|

(
∂xj +A

(2)
j

)(√
|g|gjk

(
∂xk +A

(2)
k

))
+ q2

]
u2(t, x) = 0, (t, x) ∈MT

u2(0, x) = ϕ(x), x ∈M

u2(t, x) = f(t, x), (t, x) ∈ Σ

(1.7)

where A(2)(t, x) = A(1)(t, x)−∇gΨ(t, x) and q2(t, x) = q1(t, x)− ∂tΨ(t, x). Now if ΛA(i),qi
for i = 1, 2, are

the input-output operators associated with ui and defined by (1.3) then

ΛA(1),q1
(ϕ, f) = ΛA(2),q2

(ϕ, f), for all (ϕ, f) ∈ K0.

Proof. Substituting u1(t, x) = e−Ψ(t,x)u2(t, x) in Equation (1.6), from simple computations, we get

0 = LA(1),q1
(e−Ψ(t,x)u2(t, x)) = LA(1)−∇gΨ,q1−∂tΨu2(t, x) = LA(2),q2

u2(t, x), (t, x) ∈MT

and

u2(0, x) = eΨ(0,x)u1(0, x) = ϕ(x), x ∈M,

u2(t, x) = eΨ(t,x)u1(t, x) = f(t, x), (t, x) ∈ Σ.

Hence u2 solves (1.7). Also, we have that

u2(T, x) = eΨ(T,x)u1(T, x) = u1(T, x), x ∈M, ∂νu2

∣∣∣
Σ
=

(
eΨ(∂νΨu1 + ∂νu1

) ∣∣∣
Σ
= ∂νu1

∣∣∣
Σ
,

and
(
⟨ν,A(2)⟩gu2

) ∣∣∣
Σ
=

(
⟨ν,A(1) −∇gΨ⟩geΨu1

) ∣∣∣
Σ
=

(
⟨ν,A(1)⟩gu1

) ∣∣∣
Σ
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where in the above equations, we have used the fact that Ψ ∈ W 2,∞
0 (MT ). Thus combining the above

equations together with (1.3) we get

ΛA(1),q1
(ϕ, f) = ΛA(2),q2

(ϕ, f), for all (ϕ, f) ∈ K0.

□

With this preparation, we are ready to state the main result of this paper as follows.

Theorem 1.4. Let (M, g) be an admissible manifold. Let A(i) ∈ W 1,∞(MT ;T
∗(M)) for i = 1, 2 given by

A(i)(t, x) =
n∑
j=1

A
(i)
j (t, x)dxj , in local coordinates on (M, g) and qi ∈ L∞(MT ) for i = 1, 2. Suppose ui for

i = 1, 2, is solution to (1.1) when (A, q) = (A(i), qi) for i = 1, 2 and Λpartial
A(i),qi

are input-output operator given

by (1.5) corresponding to ui for i = 1, 2. Now for ϵ > 0 small enough if

Λpartial
A(1),q1

(
ϕ, f

)
= Λpartial

A(2),q2

(
ϕ, f

)
, for all (ϕ, f) ∈ K0 (1.8)

then there exists a function Ψ ∈W 2,∞
0 (MT ) such that

A(1)(t, x)−A(2)(t, x) = ∇gΨ(t, x) and q1(t, x)− q2(t, x) = ∂tΨ(t, x), for (t, x) ∈MT

provided A(1)(t, x) = A(2)(t, x), for (t, x) ∈ Σ.

Remark 1.5. (1) Observe that the measurement data used in Theorem 1.4 is an input-output map,
unlike the usual Dirichlet to Neumann (DN) map used in the Euclidean setting. This is due to the
fact that in our boundary Carleman estimate stated in Theorem 2.1, we do not have the estimate
on weighted L2 norm of solution u at t = T which is because of the choice of weight function
φ(t, x) := λ2β2t + λx1 where β ∈ (0, 1) while in Euclidean setting one can actually take β = 1
which helped one to the Carleman estimate with a bound on the weighted L2 norm of the solution
u at t = T . We refer to [15, 51] for details about it. However, if we assume the coefficients are
small enough then we can obtain the boundary Carleman estimate (see Theorem 3.1 in [49]) with
a bound on the weighted L2 norm of the solution u at t = T and can determine the coefficients
from the knowledge of DN map measured on a suitable subset of Σ.

(2) We observe that because of gauge invariance proved in Proposition 1.3, it is impossible to prove

that A(1) = A(2) and q1 = q2 in MT from the given hypothesis of Theorem 1.4. As far as the
uniqueness issue is concerned, gauge invariance guarantees that the result obtained in Theorem 1.4
is optimal.

(3) Unique recovery of A and q is also possible with some extra conditions on the unknown vector field
A. For instance, if A is divergence-free, that is, δgA = 0 in MT , then one can recover both A and q
uniquely in MT . This divergence-free condition has been exploited in earlier works to get the full
recovery, please refer [49, 51].

(4) On the other side, if we assume that the vector field A is time-independent, then recovery of A
is possible up to a potential of the form ∇gΨ(x) and q can be fully recovered in MT . The proof
follows similarly as we have done for Theorem 1.4.

The problem considered in this article can be put under the umbrella of Calderón type inverse prob-
lems for parabolic partial differential equations (PDEs), which was initially proposed by Calderón in [14]
for elliptic PDEs and studied by Nachman [44] in two dimensions and by Sylvester-Uhlmann in [54] in
dimension three and higher. Analogous problems for parabolic and hyperbolic PDEs have been studied in
[1, 31, 45, 48]. Choulli-Kian in [21] derived a stability estimate for recovering the time-dependent coeffi-
cient, which is a product of functions depending only on time and only space variables, from the boundary
measurements. We also refer to [20], where an abstract inverse problem for parabolic pde is studied.
All these works are concerned with the recovery of zeroth order perturbation of elliptic, parabolic, and
hyperbolic PDEs from full boundary data. In [22], the recovery of general time-dependent zeroth order
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perturbation of heat operator from partial boundary measurements is considered. Inverse problems of re-
covering the coefficients appearing in the steady state convection-diffusion from full and partial boundary
measurements in Euclidean geometry have been studied in [12, 17, 19, 24, 28, 38, 46, 47, 52]. Recovery of
first-order perturbation of a parabolic pde from final and single measurement has been studied in [16] and
[18] respectively. In [8], stable recovery of time-dependent coefficients appearing in a convection-diffusion
from full boundary data has been studied. Choulli-Kian in [22] proved a stability estimate for recover-
ing a time-dependent potential from partial boundary data, and motivated by their work, authors of [49]
proved the unique recovery of time-dependent coefficients appearing in a convection-diffusion equation
from partial boundary data. In [49], a uniqueness result is proved with a smallness assumption on the
convection term, which is later on removed in a recent work of [51] where stability estimates for recovering
the time-dependent coefficients of convection-diffusion equation from partial boundary data are derived.
We also refer to [8] and [9] where stability estimates for convection-diffusion equation from full and par-
tial boundary data is studied, respectively. Recently, in [15, 27], inverse problems related to nonlinear
convection-diffusion equation is studied. In all the above-mentioned works, the inverse problems of recov-
ering coefficients appearing in parabolic PDEs from full and partial boundary measurements in Euclidean
geometry are considered. The inverse problems related to steady-state convection-diffusion equation in
Riemannian geometry are considered in prior works (see, for example [11, 29, 32, 41]) however the recovery
of time-dependent coefficients appearing in parabolic PDEs in Riemannian geometry has not been consid-
ered in prior works, and this is the main objective of this paper. To the best of our knowledge, this is
the first work that considers the partial data inverse problem for recovering both first and zeroth order
time-dependent perturbations of evolution equations in Riemannian geometry. Next, we mention works on
inverse problems related to hyperbolic and dynamical Schrödinger equations, which are closely related to
the study of this work. Inspired by [13] and [5, 6] authors of [33, 34, 35, 39, 42] studied the unique recovery
of time-dependent coefficients appearing in a hyperbolic pde from partial boundary measurements. We
also refer to [2, 3, 4, 7, 10, 26, 36, 37, 50] for inverse problems related to hyperbolic PDEs and dynamical
Schrödinger equation in Euclidean as well as in Riemannian geometry, where time-dependent coefficients
are recovered from full boundary measurements.

The rest of the article is organized as follows. In section 2, we derive the boundary and interior Carleman
estimates which we will use in section 3 to construct the exponentially growing as well as decaying solutions.
The main Theorem 1.4 of the article will be proved in section 4. Finally, we conclude the article with
Acknowledgements.

2. Boundary and interior Carleman Estimates

The present section is devoted to prove boundary and interior Carleman estimates. The boundary
Carleman estimate will be required to estimate the boundary terms in the integral identity where there
is no measurement, and the interior Carleman estimate will be required to construct the geometric optics
solutions (GO) for LA,q and its formal L2-adjoint. For a compact Riemannian manifold (M, g) with
boundary denoted by ∂M , we denote by dVg the volume form on (M, g) and by dSg the induced volume
form on ∂M . Then the L2-norm of a function u on M and f on ∂M are given by

∥u∥L2(M) :=

(∫
M
|u(x)|2 dVg

)1/2

and ∥f∥L2(∂M) :=

(∫
∂M

|f(x)|2 dSg
)1/2

, respectively.

We denote by L2(M) as the space of all functions u defined on M for which ∥u∥L2(M) < ∞ and L2(∂M)

as the space of all functions f defined on ∂M for which ∥f∥L2(∂M) < ∞. Then
(
L2(M), ∥·∥L2(M)

)
and(

L2(∂M), ∥·∥L2(∂M)

)
are Hilbert spaces with respect to the inner-products defined by

⟨f, g⟩L2(M) :=

∫
M
f(x)g(x) dVg
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and

⟨f, g⟩L2(∂M) :=

∫
∂M

f(x)g(x) dSg

respectively.

We state the boundary Carleman estimate as follows.

Theorem 2.1. Let (M, g) be an admissible manifold. For β ∈
(

1√
3
, 1

)
, let φ(t, x) := λ2β2t + λx1,

A ∈
(
W 1,∞(MT )

)n
, and q ∈ L∞(MT ). Then there exists a constant C > 0 depending only on M,T , A and

q such that

λ2∥e−φu∥2L2(MT ) +
∥∥e−φ∇gu

∥∥2
L2(MT )

+ ∥e−φ(T,·)∇gu(T, ·)∥2L2(M) + λ

∫
Σ+

e−2φ|∂νu(t, x)|2ν1 dSgdt

≤ C

(
∥e−φLA,qu∥2L2(MT ) + λ2∥e−φ(T,·)u(T, ·)∥2L2(M) + λ

∫
Σ−

e−2φ|∂νu(t, x)|2|ν1| dSgdt
) (2.1)

hold for λ large enough and for all u ∈ C2(MT ) satisfying the following

u(0, x) = 0, for x ∈M and u(t, x) = 0, for (t, x) ∈ Σ.

The ν1 appearing in (2.1) is given by ν1 := ⟨ν, ∂
∂x1

⟩g.

Proof. In order to prove the weighted H1−L2 estimate given by (2.1), we need to convexify the Carleman
weight φ. This convexification will help us to absorb the first-order perturbation A appearing in LA,q,
which has been used in [15, 51] for Euclidean case and [29] for anisotropic magnetic Schrödinger operator.
Now for s > 0, we denote the convexified weight function by φs and define by

φs(t, x) := φ(t, x)− s(x1 + 2ℓ)2

2
= λ2β2t+ λx1 −

s(x1 + 2ℓ)2

2
, (2.2)

where ℓ is a positive real number such that x1 is varying in [−ℓ, ℓ] and the existence of such an ℓ is assured
by the compactness assumption on M .
A direct computation gives

∂tφs = λ2β2, ∂x1φs = λ− s(x1 + 2ℓ), ∂2x1φs = −s, and |∂x1φs|2 = (λ− s(x1 + 2ℓ))2 . (2.3)

Before we proceed further, let us observe that

LA,qv(t, x) = ∂tv(t, x)− ∂2x1v(t, x)−∆g0v(t, x)− 2⟨A(t, x),∇gv(t, x)⟩g + q̃(t, x)v(t, x)

where ⟨·, ·⟩g and ∇g denote the inner-product and gradient operator w.r.t. metric g respectively and
q̃(t, x) := q(t, x)− δgA(t, x)− |A(t, x)|2g, here in expression of q̃, δgA given by

δgA =
1√
|g|

n∑
j,k=1

∂j

(
gjk

√
|g|Ak

)
is known as the divergence operator w.r.t. to metric g and |A|2g =

∑n
j,k=1 g

jkAjAk. With this, we define
the conjugated operator Ps with a convexified weight function φs by

Psv := e−φsLA,q (eφsv) = e−φs
(
∂t − ∂2x1 −∆g0 − 2⟨A,∇g⟩g + q̃

)
(eφsv) . (2.4)

Upon expanding the above expression, Ps will take the following form

Psv(t, x) = (∂t + (∂tφs)) v(t, x)−
(
∂2x1 + 2∂x1φs∂x1 + (∂x1φs)

2 + ∂2x1φs
)
v −∆g0v(t, x)

− 2⟨A(t, x),∇gv(t, x)⟩g − 2⟨A(t, x),∇gφs(t, x)⟩gv(t, x) + q̃(t, x)v(t, x).
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Use relation (2.3) in the above equation to get

Psv(t, x) = ∂tv(t, x) + λ2β2v(t, x)−
(
∂2x1 + 2(λ− s(x1 + 2ℓ))∂x1 + (λ− s(x1 + 2ℓ))2 − s

)
v(t, x)

−∆g0v(t, x)− 2⟨A(t, x),∇gv(t, x)⟩g − 2 (λ− s(x1 + 2ℓ)) g1kAk(t, x)v(t, x) + q̃(t, x)v(t, x).

Now if we define P1, P2 and P3 by

P1v(t, x) := (∂tv − 2(λ− s(x1 + 2ℓ))∂x1v + 4sv) (t, x),

P2v(t, x) :=
(
−∂2x1v −∆g0v − λ2(1− β2)v + 2λs(x1 + 2ℓ)v − s2(x1 + 2ℓ)2v − 3sv

)
(t, x)

:=
(
−∂2x1 −∆g0 +K(x1)

)
v(t, x), where K(x1) := 2λs(x1 + 2ℓ)− λ2(1− β2)− s2(x1 + 2ℓ)2 − 3s

P3v(t, x) := −2⟨A(t, x),∇gv(t, x)⟩g − 2 (λ− s(x1 + 2ℓ)) g1kAk(t, x)v(t, x) + q̃(t, x)v(t, x)

then one can check that Psv(t, x) has the following compact form

Psv(t, x) = P1v(t, x) + P2v(t, x) + P3v(t, x). (2.5)

Our first aim is to estimate the L2 norm of Psv on MT , therefore we define Is by

Is :=

∫
MT

|Psv(t, x)|2 dVg(x)dt =
∫
MT

|P1v(t, x) + P2v(t, x) + P3v(t, x)|2 dVgdt

≥ 1

2

∫
MT

(P1v(t, x) + P2v(t, x))
2 dVgdt−

∫
MT

|P3v(t, x)|2 dVgdt

≥
∫
MT

P1v(t, x)P2v(t, x) dVgdt−
∫
MT

|P3v(t, x)|2 dVgdt.

This gives us

Is ≥
∫
MT

P1v(t, x)P2v(t, x) dVgdt︸ ︷︷ ︸
Is,1

−
∫
MT

|P3v(t, x)|2 dVgdt︸ ︷︷ ︸
Is,2

.
(2.6)

We aim to estimate the right-hand side of (2.6). To do that, we start with the first term in the above
inequality and, therefore consider

P1v(t, x)P2v(t, x) = −∂tv(t, x)
(
∂2x1v +∆g0v

)
(t, x) +K(x1)v(t, x)∂tv(t, x)− 4sv(t, x)

(
∂2x1 +∆g0

)
v(t, x)

+ 4sK(x1)|v(t, x)|2 + 2(λ− s(x1 + 2ℓ))∂x1v(t, x)
(
∂2x1v +∆g0v

)
(t, x)

− 2K(x1)(λ− s(x1 + 2ℓ))v(t, x)∂x1v(t, x).

Now consider Is,1 from (2.6)

Is,1 =

∫
MT

P1v(t, x)P2v(t, x) dVgdt = −
∫
MT

∂tv(t, x)
(
∂2x1v +∆g0v

)
(t, x) dVgdt

+ 4s

∫
MT

K(x1)|v(t, x)|2 dVgdt+
1

2

∫
MT

K(x1)∂t|v(t, x)|2 dVgdt

− 4s

∫
MT

v(t, x)
(
∂2x1v +∆g0v

)
(t, x) dVgdt

+ 2

∫
MT

(λ− s(x1 + 2ℓ))∂x1v(t, x)
(
∂2x1v +∆g0v

)
(t, x) dVgdt

−
∫
MT

K(x1)(λ− s(x1 + 2ℓ))∂x1 |v(t, x)|2 dVgdt

:= I1 + I2 + I3 + I4 + I5 + I6
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where

I1 := −
∫
MT

∂tv(t, x)
(
∂2x1v +∆g0v

)
(t, x) dVgdt; I2 := 4s

∫
MT

K(x1)|v(t, x)|2 dVgdt

I3 :=
1

2

∫
MT

K(x1)∂t|v(t, x)|2 dVgdt; I4 := −4s

∫
MT

v(t, x)
(
∂2x1v +∆g0v

)
(t, x) dVgdt

I5 := 2

∫
MT

(λ− s(x1 + 2ℓ))∂x1v(t, x)
(
∂2x1v +∆g0v

)
(t, x) dVgdt

I6 := −
∫
MT

K(x1)(λ− s(x1 + 2ℓ))∂x1 |v(t, x)|2 dVgdt.

In order to estimate Is,1 in (2.6), we need to estimate each Ij for 1 ≤ j ≤ 6. To estimate these I ′js, we use
integration by parts repeatedly along with initial and boundary conditions on v. Consider

I1 = −
∫
MT

∂tv(t, x)
(
∂2x1v +∆g0v

)
(t, x) dVgdt =

1

2

∫
M

|∇gv(T, x)|2g dVg. (2.7)

I2 = 4s

∫
MT

K(x1)|v(t, x)|2 dVgdt

= −4s

∫
MT

(
λ2(1− β2)− 2λs(x1 + 2ℓ) + s2(x1 + 2ℓ)2 + 3s

)
|v(t, x)|2 dVgdt.

(2.8)

I3 =
1

2

∫
MT

K(x1)∂t|v(t, x)|2 dVgdt =
1

2

∫
M

K(x1)|v(T, x)|2dVg

=
1

2

∫
M

(
−λ2(1− β2) + 2λs(x1 + 2ℓ)− s2(x1 + 2ℓ)2 − 3s

)
|v(T, x)|2 dVg.

Recall ℓ ≤ (x1 + 2ℓ) ≤ 3ℓ, therefore choosing λ large enough, we obtain

I3 ≥ −Cλ2∥v(T, ·)∥2L2(M), for some constant C > 0 independent of λ. (2.9)

Next, consider

I4 = −4s

∫
MT

v(t, x)
(
∂2x1v +∆g0v

)
(t, x) dVgdt = 4s

∫
MT

|∇gv(t, x)|2g dVgdt. (2.10)

The next integral in the line is

I5 = 2

∫
MT

(λ− s(x1 + 2ℓ))∂x1v(t, x)
(
∂2x1v +∆g0v

)
(t, x) dVgdt

= 2

∫
MT

(λ− s(x1 + 2ℓ))∂x1v(t, x)∆gv(t, x) dVgdt.

Using the integration by parts, we have

I5 = −2

∫
MT

∂x1v(t, x)
〈
∇gv,∇g (λ− s(x1 + 2ℓ))

〉
g
dVgdt

− 2

∫
MT

(λ− s(x1 + 2ℓ))
〈
∇gv, ∂x1∇gv

〉
g
dVgdt

+ 2

∫
Σ
(λ− s(x1 + 2ℓ))∂x1v(t, x)∂νv(t, x) dSgdt
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where ν(x) is outward unit normal vector to ∂M at x ∈ ∂M , ∂νv(t, x) stands for the normal derivative
with respect t0 x of v at (t, x) ∈ (0, T ) × ∂M and dSg denotes the surface measure on ∂M . Again using
the integration by parts, we have that

I5 = 2s

∫
MT

|∂x1v(t, x)|2 dVgdt−
∫
Σ
(λ− s(x1 + 2ℓ))

〈
ν,

∂

∂x1

〉
g
|∇gv(t, x)|2g dSgdt

− s

∫
MT

|∇gv(t, x)|2g dVgdt+ 2

∫
Σ
(λ− s(x1 + 2ℓ))∂x1v(t, x)∂νv(t, x) dSgdt.

Now v|(0,T )×∂M = 0, implies that ∇gv|Σ = (∂νv) ν and ∂x1v|Σ =
〈
∇gv,

∂

∂x1

〉
g
|Σ = ∂νv

〈
ν,

∂

∂x1

〉
g
= ∂νvν1.

Using these, we get

I5 = s

∫
MT

(
|∂x1v(t, x)|2 − |∇g0v(t, x)|2g0

)
dVgdt+

∫
Σ
(λ− s(x1 + 2ℓ))|∂νv(t, x)|2ν1 dSgdt.

Combining I5 and I4, we have

I4 + I5 = 5s

∫
MT

|∂x1v(t, x)|2dVgdt+ 3s

∫
MT

|∇g0v(t, x)|2g0dVgdt

+

∫
Σ
(λ− s(x1 + 2ℓ))|∂νv(t, x)|2ν1 dSgdt

≥ 3s ∥∇gv∥2L2(MT ) +

∫
Σ
(λ− s(x1 + 2ℓ))|∂νv(t, x)|2ν1 dSgdt.

(2.11)

Next, we consider the last term of Is,1

I6 = −
∫
MT

K(x1)(λ− s(x1 + 2ℓ))∂x1 |v(t, x)|2 dVgdt

=

∫
MT

(λ− s(x1 + 2ℓ)) |v(t, x)|2∂x1K(x1) dVgdt− s

∫
MT

K(x1)|v(t, x)|2 dVgdt

= 2s

∫
MT

(λ− s(x1 + 2ℓ))2 |v(t, x)|2 dVgdt

+ s

∫
MT

(
λ2(1− β2)− 2λs(x1 + 2ℓ) + s2(x1 + 2ℓ)2 + 3s

)
|v(t, x)|2 dVgdt.

After simplifying, we get

I6 = sλ2(3− β2)

∫
MT

|v(t, x)|2 dVgdt− 6λs2
∫
MT

(x1 + 2ℓ)|v(t, x)|2 dVgdt

+ 3s2
∫
MT

(
s(x1 + 2ℓ)2 + 1

)
|v(t, x)|2 dVgdt.

(2.12)

Next, we estimate Is,2 in the following way:

Is,2 =

∫
MT

|P3v(t, x)|2dVgdt

=

∫
MT

∣∣∣−2⟨A(t, x),∇gv(t, x)⟩g − 2 (λ− s(x1 + 2ℓ)) g1kAk(t, x)v(t, x) + q̃(t, x)v(t, x)
∣∣∣2 dVgdt

≤ 8∥A∥2L∞(MT )∥∇gv∥2L2(MT ) + 8λ2∥A∥2L∞(MT )∥v∥
2
L2(MT ) + 2∥q̃∥2L∞(MT )∥v∥

2
L2(MT ) (2.13)
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Combining I2, I4, I5, I6, and Is,2 in the following way:

I2 + I4 + I5 + I6 − Is,2 = λ2
(
s
(
3β2 − 1

)
− 8∥A∥2L∞(MT ) −

2

λ2
∥q̃∥2L∞(MT )

)
∥v∥2L2(MT )

+ (terms having lower power of λ) ∥v∥2L2(MT ) +
(
3s− 8∥A∥2L∞(MT )

)
∥∇gv∥2L2(MT )

+

∫
Σ
(λ− s(x1 + 2ℓ))|∂νv|2ν1 dSgdt.

After choosing s and λ large enough together with using the fact that β ∈ (1/
√
3, 1), and a combination

of all estimates obtained above, will amount to have the following estimate on ∥Psv∥2L2(MT ):

∥Psv∥2L2(MT ) ≥ C
(
sλ2∥v∥2L2(MT ) + ∥∇gv(T, ·)∥2L2(M) − λ2∥v(T, ·)∥2L2(M) + s ∥∇gv∥2L2(MT )

+λ

∫
Σ
|∂νv(t, x)|2ν1 dSgdt

) (2.14)

where constant C depends only on A, q, T and M .
This provides the estimate for the operator Ps = e−φs(t,x)LA,qeφs(t,x). To obtain the required Carleman

estimate, we put v(t, x) = e−φs(t,x)u(t, x)

∥e−φsLA,qu∥2L2(MT ) + λ2C∥e−φs(T,·)u(T, ·)∥2L2(M) + λ

∫
Σ−

|e−φs∂νu(t, x)|2|ν1| dSgdt

≥ sλ2∥e−φsu∥2L2(MT ) + ∥e−φs(T,·)∇gu(T, ·)∥2L2(M) + s
∥∥e−φs∇gu

∥∥2
L2(MT )

+ λ

∫
Σ+

|e−φs∂νu(t, x)|2ν1 dSgdt.

Finally, using the expression for φ(t, x) and the fact that e−
s(x1+2ℓ)2

2 has a strictly positive lower and upper
bound, we get the following required estimate

λ2∥e−φu∥2L2(MT ) +
∥∥e−φ∇gu

∥∥2
L2(MT )

+ ∥e−φ(T,·)∇gu(T, ·)∥2L2(M) + λ

∫
Σ+

e−2φ|∂νu(t, x)|2ν1 dSgdt

≤ C

(
∥e−φLA,qu∥2L2(MT ) + λ2∥e−φ(T,·)u(T, ·)∥2L2(M) + λ

∫
Σ−

e−2φ|∂νu(t, x)|2|ν1| dSgdt
)

for some constant C > 0 independent of λ. This completes the proof of the theorem. □

Our next aim of this section is to derive the interior Carleman estimates in a Sobolev space of negative
order for LA,q and its formal L2-adjoint L∗

A,q. Before going to state and prove the interior Carleman
estimates, we first give some definitions and notations for large parameter λ-dependent Sobolev spaces
of arbitrary order. This will help us to represent the Carleman estimates in a nice form. Let us begin
by assuming that (M, g) is embedded in a compact Riemannian manifold (N, g) without boundary and
denote by NT := (0, T )×N. Following [29], we denote by Js for s ∈ R, the large parameter λ-dependent

pseudo-differential operator of order s on (N, g) and it is defined by Js :=
(
λ2 −∆g

)s/2
. Using this, we

define the large parameter λ-dependent Sobolev space Hs
λ(N) for s ∈ R, as the completion of C∞(N) with

respect to the following norm

∥u∥Hs
λ(N) := ∥Jsu∥L2(N).

Since (N, g) is a Riemannian manifold without boundary therefore the dual of Hs
λ(N), for any s ∈ R can

be identified with H−s
λ (N). Also note that for s = 1, we have that

∥u∥2H1
λ(N) := λ2∥u∥2L2(N) + ∥∇gu∥2L2(N).
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Now following [25] the time-dependent Sobolev spaces L2(0, T ;Hs
λ(N)) is defined as the set of all strongly

measurable functions u : [0, T ] → Hs
λ(N) such that

∥u∥L2(0,T ;Hs
λ(N) :=

(∫ T

0
∥u(t, ·)∥2Hs

λ(N) dt

)1/2

<∞. (2.15)

Then L2(0, T ;Hs
λ(N)) is a Banach space with respect to the norm ∥·∥L2(0,T ;Hs

λ(N)) defined by (2.15) and

the dual of L2(0, T ;Hs
λ(N)) can be identified with L2(0, T ;H−s

λ (N)). If we take v ∈ C∞
c (MT ) in (2.14)

then we have the following estimate

∥v∥2L2(0,T ;H1
λ(N)) ≤ C∥Lφv∥2L2(0,T ;L2(N)) (2.16)

where φ is same as in Theorem 2.1 and Lφ := e−φLA,qeφ. Now if we denote by L∗
φ := eφL∗

A,qe
−φ where

L∗
A,q stands for a formal L2-adjoint of LA,q then using the arguments similar to the one used in deriving

(2.14), the following estimate

∥u∥2L2(0,T ;H1
λ(N)) ≤ C∥L∗

φu∥2L2(0,T ;L2(N)) (2.17)

holds for all u ∈ C∞
c (MT ) where φ is same as in Theorem 2.1 and constant C > 0 is independent of λ and

u.
In order to construct the suitable solutions to L∗

A,qu = 0 and LA,qv = 0, we need to shift the index by

−1 for spacial variable in (2.16) and (2.17) respectively, which we will do in the following lemma.

Lemma 2.2. Let L∗
φ := eφL∗

A,qe
−φ, and Lφ := e−φLA,qeφ, where L∗

A,q denote the formal L2-adjoint of
LA,q and φ, A and q be as in Theorem 2.1. Then there exists a constant C > 0 independent of λ and v
such that

∥v∥L2([0,T ];L2(N)) ≤ C∥L∗
φv∥L2(0,T ;H−1

λ (N)) (2.18)

holds for all λ large enough and for all v ∈ C∞
c (MT ) and

∥v∥L2([0,T ];L2(N)) ≤ C∥Lφv∥L2(0,T ;H−1
λ (N)) (2.19)

holds for all λ large enough and for all v ∈ C∞
c (MT ).

Proof. First, we establish (2.18), and the proof for (2.19) can be carried out in a similar manner. We begin
with the inequality:

∥v∥2L2(0,T ;H1
λ(N)) ≤ C∥L∗

φv∥2L2(0,T ;L2(N))

holds for all v ∈ C∞
c (MT ). Next, we shift the index by −1 in the above estimate. Let w ∈ C∞

c (MT ) and
consider the adjoint operator defined as:

L∗
A,q :=

(
− ∂t −

n∑
j,k=1

1√
|g|

(∂xj −Aj)(
√

|g|gjk(∂xk −Ak)) + q
)
.

For s > 0, define the convexified weight function φs as follows:

φs(t, x) := φ(t, x) +
s(x1 + 2ℓ)2

2
= λ2β2t+ λx1 +

s(x1 + 2ℓ)2

2
.

Let P ∗
s := eφsL∗

A,qe
−φs , we have

P ∗
sw = eφs

(
−∂t − ∂2x1 −∆g0 + 2⟨A,∇g⟩g + q̃∗

)
(e−φsw)

where q̃∗(t, x) := q(t, x) + δgA(t, x)− |A(t, x)|2g.
Expressing P ∗

sw as a sum of three components:

P ∗
sw := P ∗

1w(t, x) + P ∗
2w(t, x) + P ∗

3w(t, x)
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where

P ∗
1w(t, x) := (−∂tw + 2(λ+ s(x1 + 2ℓ))∂x1w + 4sw) (t, x):= −∂tw(t, x) + P̃1

∗
w(t, x)

P ∗
2w(t, x) :=

(
−∂2x1w −∆g0w − λ2(1− β2)w − 2λs(x1 + 2ℓ)w − s2(x1 + 2ℓ)2w − 3sw

)
(t, x),

P ∗
3w(t, x) := 2⟨A(t, x),∇gw(t, x)⟩g − 2 (λ+ s(x1 + 2ℓ)) g1kAk(t, x)w(t, x) + q̃∗(t, x)w(t, x).

where P̃1
∗
w := 2 (λ+ s(x1 + 2ℓ)) ∂x1w + 4sw. Now if we denote the symbols of the pseudo-differential

operators P̃1
∗
, P ∗

2 , J and J−1 by p̃1
∗, p∗2, j and j−1 respectively then they are given by

p̃1
∗(x, ξ) = 2 (λ+ s(x1 + 2ℓ)) ξ1 + 4s, p∗2(x, ξ) = |ξ|2g − λ2(1− β2)− 2λs(x1 + 2ℓ)− s2(x1 + 2ℓ)2 − 3s

j(ξ, λ) =
(
λ2 + |ξ|2g

)1/2
and j−1(ξ, λ) =

(
λ2 + |ξ|2g

)−1/2

where |ξ|2g := ξ21 + |ξ′|2g0 stands for the symbol of −∆g := −∂2x1 − ∆g0 (see [55, Page 353]). Now since

both J and J−1 commute with ∂t appearing in P ∗
1 therefore using the properties of the composition of

pseudo-differential operators ( see [30, Theorem 18.1.8] and [15, Proposition 4.1]), we have

J−1(P ∗
1 + P ∗

2 )J
1w = (P ∗

1 + P ∗
2 )w + Eλw

where Eλ is the pseudo-differential operator of order 1 with symbol given by

Eλ(x, ξ) =
iξ1(

λ2 + |ξ|2g
)3/2 (2isξ1 − 2λs− 2s2(x1 + 2ℓ)

) (
λ2 + |ξ|2g

)1/2
+ o
(λ2+|ξ|2g)

1/2→∞
(1) (2.20)

Also note that while deriving (2.20), we have used the fact that P̃1
∗
+ P ∗

2 depends only on x1 and now
using (2.20) along with the properties of pseudo-differential operators, we have

∥Eλw∥L2(0,T ;L2(N)) ≤ Cs2∥w∥L2(0,T ;L2(N)) (2.21)

holds for all C∞
c (MT ). Combining the above estimates along with the triangle inequality, we get

∥(P ∗
1 + P ∗

2 )J
1w∥2

L2(0,T ;H−1
λ (N))

= ∥J−1(P ∗
1 + P ∗

2 )J
1w∥2L2(0,T ;L2(N))

≥ 1

2
∥(P ∗

1 + P ∗
2 )w∥2L2(0,T ;L2(N)) − ∥Eλw∥2L2(0,T ;L2(N)).

Following the same calculations as done for the Carleman estimate (2.1) together with the estimate (2.21)

and taking λ2

s3
sufficiently large, we obtain

∥(P ∗
1 + P ∗

2 )J
1w∥2

L2(0,T ;H−1
λ (N))

≥ C ′
(
s∥∇gw∥2L2(0,T ;L2(N)) + sλ2∥w∥2L2(0,T ;L2(N))

)
− Cs4∥w∥2L2(0,T ;L2(N))

(2.22)

≥ C ′′
(
s∥∇gw∥2L2(0,T ;L2(N)) + sλ2∥w∥2L2(0,T ;L2(N))

)
. (2.23)

Also using the expression for P ∗
3 given above and boundedness of A and q, we obtain the following estimate

∥P ∗
3 J

1w∥2
L2(0,T ;H−1

λ (N))
≤ C(∥A∥2∞∥∇gw∥2L2(0,T ;L2(N)) + λ2∥A∥2∞∥w∥2L2(0,T ;L2(N)) + ∥q̃∗∥2∞∥w∥2L2(0,T ;L2(N)))

(2.24)

Hence using (2.22) and (2.24) and choosing s and λ large enough, we get

∥P ∗
s J

1w∥L2(0,T ;H−1
λ (N)) ≥ C∥w∥L2(0,T ;H1

λ(N)).

Now, consider χ ∈ C∞
c (M̃) such that χ = 1 in M1 where M ⊂ M1 ⊂ M̃ . By taking w = χJ−1v in the

above estimate and using the estimates

∥(1− χ)J−1v∥L2(0,T ;H1
λ(N)) ≤

C

λ2
∥v∥L2(0,T ;L2(N))
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and

∥v∥L2(0,T ;L2(N)) = ∥J−1v∥L2(0,T ;H1
λ(N)) ≤ ∥w∥L2(0,T ;H1

λ(N)) +
C

λ2
∥v∥L2(0,T ;L2(N))

we get

∥P ∗
s v∥L2(0,T ;H−1

λ (N)) ≥ ∥P ∗
s J

1w∥L2(0,T ;H−1
λ (N)) −

C

λ2
∥v∥L2(0,T ;L2(N))

≥ ∥w∥L2(0,T ;H1
λ(N)) −

C

λ2
∥v∥L2(0,T ;L2(N))

≥ C∥v∥L2(0,T ;L2(N))

holds for λ large. Now, using the expression for φ(t, x) and the fact that e
s(x1+2ℓ)2

2 has a strictly positive
lower and upper bound, we conclude that

∥v∥L2([0,T ];L2(N)) ≤ C∥L∗
φv∥L2(0,T ;H−1

λ (N))

holds for all λ large enough and for all v ∈ C∞
c (MT ). This completes the proof of (2.18). □

The above estimates, together with the Hahn-Banach theorem and the Riesz representation theorem,
give the following solvability result, proof of which follows from [49, 51].

Lemma 2.3. Let φ, A and q be as before and λ > 0 be large enough. Then for F ∈ L2(MT ) there exists
a solution u ∈ H1(0, T ;H−1(M)) ∩ L2(0, T ;H1(M)) of

Lφw(t, x) = F (t, x), (t, x) ∈MT

satisfying the following estimate

∥u∥L2(0,T ;H1
λ(M)) ≤ C∥F∥L2(MT ) (2.25)

for some constant C > 0 independent of λ and u and there exists a solution v ∈ H1(0, T ;H−1(M)) ∩
L2(0, T ;H1(M)) of

L∗
φw(t, x) = F (t, x), (t, x) ∈MT

satisfying the following estimate

∥v∥L2(0,T ;H1
λ(M)) ≤ C∥F∥L2(MT ) (2.26)

for some constant C > 0 independent of λ and v.

Proof. The proof for Lφ is presented below, and the proof for L∗
φ can be established using analogous

arguments.
Consider the subspace S of L2(0, T ;H−1

λ (N)) defined as

S := {L∗
φw(t, x) : w ∈ C∞

c (MT )}.

Define the linear operator T on S by

T (L∗
φz) =

∫
MT

z(t, x)F (t, x) dVgdt, for F ∈ L2(MT ).

For any L∗
φz ∈ S, we have

|T (L∗
φz)| ≤

∫
MT

|z(t, x)||F (t, x)| dVgdt ≤ ∥z∥L2(MT )∥F∥L2(MT ).

Using the Carleman estimate (2.18), we obtain

|T (L∗
φz)| ≤ C∥F∥L2(MT )∥L∗

φz∥L2(0,T ;H−1
λ (N)).
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This inequality holds for z ∈ C∞
c (MT ). By the Hahn-Banach theorem, extend the linear operator T to

L2(0, T ;H−1
λ (N)). Denote the extended map as T and note that it satisfies the inequality

∥T∥ ≤ C∥F∥L2(MT ).

By the Riesz representation theorem, as T is a bounded linear functional on L2(0, T ;H−1
λ (N)), there exists

a unique u ∈ L2(0, T ;H1
λ(N)) such that

T (f) = ⟨f, u⟩L2(0,T ;H−1
λ (N)),L2(0,T ;H1

λ(N)) for f ∈ L2(0, T ;H−1
λ (N)),

with

∥u∥L2(0,T ;H1
λ(N)) ≤ C∥F∥L2(MT ).

Now, for z ∈ C∞
c (MT ), choosing f = L∗

φz in the above equation, we get Lφu = F .

Using the expression for Lφ and the fact that u ∈ L2(0, T ;H1(M)) and F ∈ L2(MT ), we conclude that
∂tu ∈ L2(0, T ;H−1(M)). Hence, we have u ∈ H1(0, T ;H−1(M)) ∩ L2(0, T ;H1(M)).

□

3. Construction of geometric optics solutions

In this section, we aim to construct the exponential growing and decaying solutions to the convection-
diffusion operator LA,q and its L2-adjoint L∗

A,q, respectively. Construction of these solutions will be proved
with the help of the interior Carleman estimates in negative order Sobolev spaces stated in Lemma 2.2.

3.1. Construction of exponentially growing solutions. In this subsection, we will construct the
exponential growing solutions to LA,qu(t, x) = 0, in MT which take the following form

u(t, x) = e(φ+iψ)(t,x)
(
Tg(t, x) +Rg,λ(t, x)

)
(3.1)

where φ is the same as in Theorem 2.1 and ψ, Tg will be constructed using the WKB construction in such
a way that the correction term Rg,λ satisfies the following

e−(φ+iψ)LA,q
(
e(φ+iψ)Rg,λ(t, x)

)
= Fλ(t, x), (t, x) ∈MT

for Fλ ∈ L2(MT ) such that ∥Fλ∥L2(MT ) ≤ C, for some constant C > 0 independent of λ and Rg,λ satisfies
∥Rg,λ∥L2(0,T ;H1

λ(M)) ≤ C∥Fλ∥L2(MT ), for some constant C > 0, not depending on λ. More precisely, we

prove the following theorem.

Theorem 3.1. Let MT , LA,q and φ be as before. Let (D, g0) be a simple manifold satisfying M0 ⊂ D and
there exists a y0 ∈ D such that (x1, y0) /∈ M for all x1. Now if (r, θ) denote the polar normal coordinates
on (D, g0), (x1, r, θ) denote the points in M and A1 and Ar are components of A in x1 and r coordinates
respectively, then for λ large enough the following equation

LA,qv(t, x) = 0, (t, x) ∈MT

has a solution taking the following form

u(t, x) = eφ+iψ
(
Tg(t, x1, r, θ) +Rg,λ(t, x1, r, θ)

)
(3.2)

where

ψ = λ(
√
1− β2)r, and Tg(t, x1, r, θ) = ϕ(t)e

iµ
(√

1−β2
)
x1e−µreiΦ1(t,x1,r,θ)b(r, θ)−1/4h(θ)

here ϕ ∈ C∞
c (0, T ), µ is a real number, Φ1 is solution to

∂1Φ1 + i(
√
1− β2)∂rΦ1 +

(
−iA1 + (

√
1− β2)Ar

)
= 0
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and Rg,λ satisfies the following

Lφ
(
eiψRg,λ

)
(t, x) = −eiψLA,qTg(t, x), (t, x) ∈MT

and ∥Rg,λ∥L2(0,T ;H1
λ(M)) ≤ C for some constant C > 0 independent of λ.

Proof. Following [29], if we denote ρ := φ+ iψ, then simple calculations show that the conjugated operator
Lρ := e−ρLA,qeρ will have the following expression

Lρ = LA,q +
(
∂tρ−∆gρ− gjk∂jρ∂kρ

)
− 2

(
gjk∂jρ∂k + gjk∂jρAk

)
.

Using ρ = φ+ iψ, and φ = λ2β2t+ λx1, we get

Lρ = LA,q +
(
λ2β2 − λ2 + gjk∂jψ∂kψ

)
−
(
2λ∂1 + 2igjk∂jψ∂k + 2λA1 + 2igjk∂jψAk + i∆gψ + 2iλ∂1ψ − i∂tψ

)
.

(3.3)

Now u given by (3.1) solves LA,qv = 0 if and only if Lρ (e−ρu) = 0. This will give us

LρRg,λ(t, x) = −LA,qTg(t, x)−
(
λ2β2 − λ2 + gjk∂jψ∂kψ

)
Tg(t, x)

+
(
2λ∂1 + 2igjk∂jψ∂k + 2λA1 + 2igjk∂jψAk + i∆gψ+2iλ∂1ψ − i∂tψ

)
Tg(t, x), (t, x) ∈MT .

(3.4)

In order to have ∥Rg,λ∥L2(0,T ;H1
λ(M) ≤ C, we choose ψ and Tg such that

∂tψ = 0, gjk∂jψ∂kψ = λ2(1− β2) (3.5)

and (
2λ∂1 + 2igjk∂jψ∂k + 2λA1 + 2igjk∂jψAk + i∆gψ+2iλ∂1ψ

)
Tg(t, x) = 0, (t, x) ∈MT . (3.6)

To solve equations (3.5) and (3.6) for ψ and Tg, we use the polar normal coordinates (r, θ) on (D, g0)
centered at y0 ∈ D as mentioned in statement of theorem. We consider the polar normal coordinates on
D which are denoted by (r, θ) and given by x0 = expy0(rθ), where r > 0 and θ ∈ Sy0(D) := {v ∈ Ty0D :
|v|g = 1}, here Ty0D denote the tangent space to D at y0 ∈ D. Then using the Gauss lemma (see Lemma
15 in Chapter 9 of [53]) there exists a smooth positive definite matrix P (r, θ) with det(P ) := b(r, θ) such
that the metric g0 in the polar normal coordinates (r, θ), takes the following form

g0(r, θ) =

[
1 0
0 P (r, θ)

]
. (3.7)

Now since the points in M are denoted by (x1, r, θ) where (r, θ) are polar normal coordinates in (D, g0),
therefore after using the previous form of g0, the metric g has the following form

g(x1, r, θ) =

1 0 0
0 1 0
0 0 P (r, θ)

 . (3.8)

Using (3.8), we see that

ψ(x) = (λ
√

1− β2)distg(y0, x) = (λ
√
1− β2)r, (3.9)

solves equation (3.5) on M . Using this choice of ψ and form of g given by (3.8) in equation (3.6), we have(
∂1 + i(

√
1− β2)∂r +A1 + i(

√
1− β2)Ar + i(

√
1− β2)

∂rb(r, θ)

4b(r, θ)

)
Tg(t, x1, r, θ) = 0.
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Now, one can check that the solution of the above equation can be given by

Tg(t, x1, r, θ) = ϕ(t)e
iµ

(√
1−β2

)
x1e−µreiΦ1(t,x1,r,θ)b(r, θ)−1/4h(θ) (3.10)

where ϕ ∈ C∞
c (0, T ), µ ∈ R, h ∈ C∞(Sy0(D)) are arbitrary but fixed and Φ1(t, x1, r, θ) satisfies the

following (
∂1Φ1 + i

(√
1− β2

)
∂rΦ1

)
+
(
−iA1 + (

√
1− β2)Ar

)
= 0. (3.11)

Now using (3.9) and (3.10) in (3.4), we get

LρRg,λ(t, x) = −LA,qTg(t, x), (t, x) ∈MT

But LρRg,λ = e−iψLφ
(
eiψRg,λ

)
therefore if we denote R̃g,λ = eiψRg,λ then R̃g,λ satisfies the following

equation

LφR̃g,λ(t, x) = −eiψLA,qTg(t, x), (t, x) ∈MT (3.12)

Now using the expressions for ψ and Tg from (3.9) and (3.10) respectively and assumptions on A and q, we

have that −eiψLA,qTg ∈ L2(MT ) and ∥eiψLA,qTg∥L2(MT ) ≤ C, for some constant C > 0 independent of λ.
Hence using Lemma 2.3 together with above estimate for right hand side of (3.12), we conclude that there

exists R̃g,λ ∈ H1(0, T ;H−1(M)) ∩ L2(0, T ;H1(M)) solving (3.12) and it satisfies the following estimate

∥R̃g,λ∥L2(0,T ;H1
λ(M)) ≤ C, for some constant C > 0, independent of λ. Hence, we conclude that Rg,λ solves

the required equation and satisfies the desired estimate. This completes the proof of the Theorem. □

3.2. Construction of exponentially decaying solutions. The aim of this subsection is to construct
the exponential decaying solutions to

L∗
A,qu :=

(
− ∂t −

n∑
j,k=1

1√
|g|

(∂xj −Aj)(
√
|g|gjk(∂xk −Ak)) + q

)
u = 0, in MT

taking the following form

u(t, x) = e−(φ−iψ)(t,x)
(
Td(t, x) +Rd,λ(t, x)

)
(3.13)

where φ is the same as in Theorem 2.1 and ψ, Td will be constructed using the WKB construction in such
a way that the correction term Rd,λ satisfies the following

e(φ−iψ)L∗
A,q

(
e−(φ−iψ)Rd,λ(t, x)

)
= Fλ(t, x), (t, x) ∈MT

for some Fλ ∈ L2(MT ) such that ∥Fλ∥L2(MT ) ≤ C, for some constant C > 0 independent of λ and Rd,λ
satisfies ∥Rd,λ∥L2(0,T ;H1

λ(M)) ≤ C∥Fλ∥L2(MT ), for some constant C > 0 not depending on λ. To construct

these solutions, we first start with the construction of ψ and Td following the arguments used in Theorem
3.1. Denote by ρ := φ− iψ, then one can check that the conjugated operator

L∗
ρ := eρL∗

A,qe
−ρ = eρ

(
− ∂t −

n∑
j,k=1

1√
|g|

(∂xj −Aj)(
√
|g|gjk(∂xk −Ak)) + q

)
e−ρ

is given by

L∗
ρ = L∗

A,q +
(
∂tρ− gjk∂jρ∂kρ

)
+
(
2gjk∂jρ∂k − 2gjk∂jρAk +∆gρ

)
.

Using ρ = φ− iψ and φ = λ2β2t+ λx1, we have

L∗
ρ = L∗

A,q +
(
λ2β2 − λ2 + gjk∂jψ∂kψ

)
+
(
2λ∂1 − 2igjk∂jψ∂k − 2λA1 + 2igjk∂jψAk − i∆gψ+2iλ∂1ψ − i∂tψ

)
.



PARTIAL DATA INVERSE PROBLEM 17

Now we observe that u given by (3.13) solves L∗
A,qv = 0 in MT if and only if L∗

ρ (e
ρu) = 0 in MT . Using

this, we see that Rd,λ satisfies the following equation

L∗
ρRd,λ(t, x) = −L∗

A,qTd(t, x)−
(
λ2β2 − λ2 + gjk∂jψ∂kψ

)
Td(t, x)

−
(
2λ∂1 − 2igjk∂jψ∂k − 2λA1 + 2igjk∂jψAk − i∆gψ+2iλ∂1ψ − i∂tψ

)
Td(t, x).

(3.14)

To get the estimate ∥Rd,λ∥L2(0,T ;H1
λ(M)) ≤ C, for some constant C > 0 independent of λ, we choose ψ and

Td satisfying the following equations

∂tψ = 0, λ2β2 − λ2 + gjk∂jψ∂kψ = 0 (3.15)

and (
2λ∂1 − 2igjk∂jψ∂k − 2λA1 + 2igjk∂jψAk − i∆gψ+2iλ∂1ψ

)
Td(t, x) = 0, (t, x) ∈MT (3.16)

respectively. To solve equations (3.15) and (3.16) for ψ and Td, we again use the polar normal coordinates
(r, θ) on (D, g0) centered at y0 ∈ D as used in the proof of Theorem 3.1. For a fixed y0 ∈ D, we consider
the polar normal coordinates on D which are denoted by (r, θ) and given by x0 = expy0(rθ), where r > 0
and θ ∈ Sy0(D) : {v ∈ Ty0D : |v|g = 1}, here Ty0D denote the tangent space to D at y0 ∈ D. Then using
the Gauss lemma (see Lemma 15 in Chapter 9 of [53]) there exists a smooth positive definite matrix P (r, θ)
with detP (r, θ) = b(r, θ) such that the metric g0 in the polar normal coordinates (r, θ), takes form given
by (3.7). Now since the points in M are denoted by (x1, r, θ) where (r, θ) are polar normal coordinates in
(D, g0), therefore after using the form of g0 given by (3.7), the metric g takes the form given by equation
(3.8) and using this, we observe that

ψ(x) =
(
λ
√

1− β2
)
distg(y0, x) =

(
λ
√
1− β2

)
r, (3.17)

solves equation (3.15) and

Td(t, x1, r, θ) = ϕ(t)eiΦ2(t,x1,r,θ)b(r, θ)−1/4h(θ) (3.18)

solves equation (3.16) where ϕ ∈ C∞
c (0, T ), h ∈ C∞(Sy0(D)) are arbitrary but fixed and Φ2(t, x1, r, θ)

satisfies the following (
∂1Φ2 − i

(√
1− β2

)
∂rΦ2

)
+
(
iA1 +

√
1− β2Ar

)
= 0, (3.19)

A1 and Ar are components of A in x1 and r coordinates respectively. Now if we use (3.17) and (3.18) in
equation (3.14) and repeating the arguments used in showing the estimate for Rg,λ in Theorem 3.1, then
we get that there exists Rd,λ ∈ H1(0, T ;H−1(M)) ∩ L2(0, T ;H1(M)) solving

L∗
φ

(
eiψRd,λ

)
(t, x) = −eiψLA,qTd(t, x), (t, x) ∈MT (3.20)

and Rd,λ satisfies the following estimate

∥Rd,λ∥L2(0,T ;H1
λ(M) ≤ C (3.21)

for some constant C > 0 independent of λ. Combining all these, we end up with proving the following
theorem.

Theorem 3.2. Let MT , LA,q and φ be as before. Let (D, g0) be a simple manifold which is extension of
(M0, g0) in the sense that M0 ⊂ D and there exists a y0 ∈ D such that (x1, y0) /∈ M for all x1. Now if
(r, θ) denote the polar normal coordinates on (D, g0), (x1, r, θ) denote the points in M and A1 and Ar are
components of A in x1 and r coordinates respectively, then for λ large enough the following equation

L∗
A,qv(t, x) = 0, (t, x) ∈MT



18 MISHRA, PUROHIT AND VASHISTH

has a solution taking the following form

v(t, x) = e−(φ−iψ)(t,x)
(
Td(t, x1, r, θ) +Rd,λ(t, x1, r, θ)

)
(3.22)

where ψ, Td are given by (3.17), (3.18) and Rd,λ satisfies (3.20) and (3.21).

4. Derivation of Integral identity and proof of Main Theorem

We use this section to derive an integral identity, which will be required to prove our main result. Later,
using the geometric optics solutions constructed in Section 3, we conclude the proof of Theorem 1.4. We
start by recalling

LA,q = ∂t −
n∑

j,k=1

1√
|g|

(
∂xj +Aj(t, x)

) (
gjk

√
|g|(∂xk +Ak(t, x))

)
+ q(t, x)

and

L∗
A,q = −∂t −

n∑
j,k=1

1√
|g|

(∂xj −Aj(t, x))
(√

|g|gjk(∂xk −Ak(t, x))
)
+ q(t, x).

For l = 1, 2, let A(l) and ql be as in Theorem 1.4. Further assume that ul is solution to the corresponding
IBVP for LA(l),ql

given by (1.1) when (A, q) = (A(l), ql) for l = 1, 2, that is, for l = 1, 2, we have
LA(l),ql

ul(t, x) = 0, (t, x) ∈MT

ul(0, x) = ϕ(x), x ∈M

ul(t, x) = f(t, x), (t, x) ∈ Σ.

(4.1)

Then u := u1 − u2, satisfies the following IBVP with zero initial and boundary conditions
LA(1),q1

u(t, x) = Qu2(t, x), (t, x) ∈MT

u(0, x) = 0, x ∈M

u(t, x) = 0, (t, x) ∈ Σ,

(4.2)

where Qu2(t, x) :=
(
|A(1)|2g − |A(2)|2g

)
u2 + 2

〈
A(1) −A(2),∇gu2

〉
g
+ δg

(
A(1) −A(2)

)
u2 + (q2 − q1)u2. To

simplify the notation, let us denote by q̃(t, x) := (q̃1− q̃2)(t, x) and Ã(t, x) := (Ã)1≤j≤n := (A(1)−A(2))(t, x)

where q̃i := |A(i)|2g + δgA
(i) − qi, for i = 1, 2, then with these notations Qu2 becomes

Qu2(t, x) = 2⟨Ã(t, x),∇gu2(t, x)⟩g + q̃(t, x)u2(t, x).

Now since Qu2 ∈ L2(MT ) therefore using Theorem 1.43 in [23] we have that there exists a unique solution

u ∈ L2(0, T ;H2(M)) ∩H1(0, T ;L2(M)) to (4.2) with ∂νu ∈ L2(0, T ;H1/2(Σ)). Now if v(t, x) is a solution
to the adjoint operator of LA(1),q1

, given by

L∗
A(1),q1

v(t, x) = 0, (t, x) ∈MT , (4.3)
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then we observe that

⟨(ΛA(1),q1
− ΛA(2),q2

)(ϕ, f), v|∂M∗
T
⟩ = ⟨NA(1),q1

u1 −NA(2),q2
u2, v|∂M∗

T
⟩

=

∫
MT

(
−u1∂tv + ⟨∇gu1,∇gv⟩g + 2u1⟨A(1),∇gv⟩g + (δgA

(1))u1v − |A(1)|2gu1v + q1u1v
)
dVgdt

−
∫
M
u1(0, x)v̄(0, x)dVg

−
∫
MT

(
−u2∂tv + ⟨∇gu2,∇gv⟩g + 2u2⟨A(2),∇gv⟩g + (δgA

(2))u2v − |A(2)|2gu2v + q2u2v
)
dVgdt

+

∫
M
u2(0, x)v̄(0, x)dVg.

Using integration by parts with u|Σ = 0, u|t=0 = 0 and v is solution to (4.3), we get

⟨(ΛA(1),q1
− ΛA(2),q2

)(ϕ, f), v|∂M∗
T
⟩ = −2

∫
MT

⟨Ã(t, x),∇gu2(t, x)⟩gv̄(t, x) dVgdt−
∫
MT

q̃(t, x)u2(t, x)v̄(t, x) dVgdt.

(4.4)

Multiplying equation (4.2) by v̄(t, x) and integrate it over MT , we get∫
MT

LA(1),q1
u(t, x)v̄(t, x) dVgdt = 2

∫
MT

⟨Ã(t, x),∇gu2(t, x)⟩gv̄(t, x) dVgdt+
∫
MT

q̃(t, x)u2(t, x)v̄(t, x) dVgdt.

Now use the integration by parts together with u|Σ = 0, u|t=0 = 0, Ã|Σ = 0 and the fact that v is a solution
to (4.3), to obtain the following identity

2

∫
MT

⟨Ã(t, x),∇gu2(t, x)⟩gv̄(t, x) dVgdt+
∫
MT

q̃(t, x)u2(t, x)v̄(t, x) dVgdt

= −
∫
Σ
gjkνj∂xku(t, x)v̄(t, x) dSgdt+

∫
M
u(T, x)v̄(T, x) dVg.

(4.5)

From Equations (4.4) and (4.5), we have

⟨(ΛA(1),q1
− ΛA(2),q2

)(ϕ, f), v|∂M∗
T
⟩ =

∫
Σ
gjkνj∂xku(t, x)v̄(t, x) dSgdt−

∫
M
u(T, x)v̄(T, x) dVg.

Using (1.8), we get ∂νu|Σ−,ϵ/2
= 0 and u|t=T = 0. Therefore, Equation (4.5) becomes

2

∫
MT

⟨Ã(t, x),∇gu2(t, x)⟩gv̄(t, x) dVgdt+
∫
MT

q̃(t, x)u2(t, x)v̄(t, x) dVgdt

= −
∫
Σ\Σ−,ϵ/2

gjkνj∂xku(t, x)v̄(t, x) dSgdt.
(4.6)

Let us define J1, J2 and J3 by

J1 := 2

∫
MT

⟨Ã(t, x),∇gu2(t, x)⟩gv̄(t, x) dVgdt, J2 :=
∫
MT

q̃(t, x)u2(t, x)v̄(t, x) dVgdt and

J3 := −
∫
Σ\Σ−,ϵ/2

∂νu(t, x)v̄(t, x) dSgdt.

With these notations (4.6) becomes

J1 + J2 = J3. (4.7)

Our next aim is to substitute the exponentially growing and decaying solutions constructed in section 3,
for u2 and v respectively, in each term of equation (4.7). Recall that u2 satisfies

LA(2),q2
u2 = 0, in MT
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and v satisfies

L∗
A(1),q1

v = 0, in MT

therefore we choose the expressions for solutions u2 and v from (3.2) and (3.22) respectively, substitute in
each term of (4.7). We start with the following calculations〈

Ã(t, x),∇gu2(t, x)
〉
g
v̄ =

(〈
Ã(t, x),∇g (φ+ iψ)

〉
g
Tg(t, x) +

〈
Ã(t, x),∇g (φ+ iψ)

〉
g
Rg,λ(t, x)

+
〈
Ã,∇gTg(t, x)

〉
g
+
〈
Ã,∇gRg,λ(t, x)

〉
g

)(
T̄d(t, x) + R̄d,λ(t, x)

)
.

=
〈
Ã(t, x),∇g (φ+ iψ)

〉
g
Tg(t, x)T̄d(t, x) +

〈
Ã(t, x),∇g (φ+ iψ)

〉
g
Tg(t, x)R̄d,λ(t, x)

+
〈
Ã(t, x),∇g (φ+ iψ)

〉
g
Rg,λ(t, x)T̄d(t, x) +

〈
Ã(t, x)∇g (φ+ iψ)

〉
g
Rg,λ(t, x)R̄d,λ(t, x)

+
〈
Ã,∇gTg(t, x)

〉
g
T̄d(t, x) +

〈
Ã,∇gTg(t, x)

〉
g
R̄d,λ(t, x)

+
〈
Ã,∇gRg,λ(t, x)

〉
g
T̄d(t, x) +

〈
Ã,∇gRg,λ(t, x)

〉
g
R̄d,λ(t, x)

:=
〈
Ã(t, x),∇g (φ+ iψ)

〉
g
Tg(t, x)T̄d(t, x) + Z1(t, x).

Similarly, we see that

q̃(t, x)u2(t, x)v̄(t, x) = q̃(t, x)
(
T̄dTg(t, x) + T̄dRg,λ(t, x) + TgR̄d,λ(t, x) + R̄d,λ(t, x)Rg,λ(t, x)

)
:= Z2(t, x).

Using the above expressions in definitions of J1 and J2, we get

J1 + J2 = 2

∫
MT

〈
Ã(t, x),∇g (φ+ iψ)

〉
g
Tg(t, x)T̄d(t, x) dVgdt

+ 2

∫
MT

Z1(t, x) dVgdt+

∫
MT

Z2(t, x) dVgdt.

(4.8)

Now using the expression for v from (3.22) in the expression of J3, we obtain

J3 = −
∫
Σ\Σ−,ϵ/2

e−(φ+iψ)∂νu(t, x)T̄d(t, x) dSgdt−
∫
Σ\Σ−,ϵ/2

e−(φ+iψ)∂νu(t, x)R̄d,λ(t, x) dSgdt.

We use the boundary Carleman estimate given in Theorem 2.1 and follow the arguments used in deriving
Lemma 5.1 in [49] to get the following estimate for J3

|J3| ≤ Cλ1/2, for some constant C > 0, independent of λ. (4.9)

Using (4.8) together with the estimate on J3 given by (4.9) in (4.7), we get∣∣∣∣2 ∫
MT

〈
Ã(t, x),∇g (φ+ iψ)

〉
g
Tg(t, x)T̄d(t, x) dVgdt

∣∣∣∣ ≤ ∣∣∣∣2∫
MT

Z1(t, x) dVgdt+

∫
MT

Z2(t, x) dVgdt

∣∣∣∣+ |J3|

≤ C
(
∥Z1∥L2(MT ) + ∥Z2∥L2(MT ) + |J3|

)
.

Let (x1, r, θ) be the polar normal coordinate on (M, g) and Ã1 and Ãr be components of Ã in x1 and r
coordinates respectively as in Theorem 3.1. Then, the above estimate can be rewritten as∫

R

∫
R

∫
SyM0

∫ τ+(y0,θ)

0

(
Ã1 + i

√
1− β2Ãr

)
Tg(t, x1, r, θ)T̄d(t, x1, r, θ)b(r, θ)

1/2drdθdx1dt

≤ C

λ

(
∥Z1∥L2(MT ) + ∥Z2∥L2(MT ) + |J3|

) (4.10)
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where we used the fact dVg = b(r, θ)1/2dx1drdθ in polar normal coordinates on (M, g) and τ+(y0, θ) is
length of the geodesic in M , starting at y0 in the direction of θ. After using the estimates on Rd,λ and
Rg,λ together with the expressions for Td and Tg from Theorems 3.1 and 3.2, we get that

∥Zi∥L2(MT ) ≤ C, for i = 1, 2 and constant C > 0 independent of λ.

Using this estimate along with equation (4.9) in equation (4.10) and taking λ→ ∞, we get∫
R

∫
R

∫
SyM0

∫ τ+(y0,θ)

0

(
Ã1 + i

√
1− β2Ãr

)
(ϕ(t))2 e

iµ
(√

1−β2
)
x1e−µreiΦ(t,x1,r,θ) (h(θ))2 drdθdx1dt = 0,

where Φ(t, x1, r, θ) :=
(
Φ1 − Φ2

)
(t, x1, r, θ) with Φ1 and Φ2 satisfying equations (3.11) and (3.19) respec-

tively. As this relation is true for all cutoff functions ϕ ∈ C∞
c (0, T ) therefore we get∫

R

∫
SyM0

∫ τ+(y0,θ)

0

(
Ã1 + i

√
1− β2Ãr

)
(t, x1, r, θ)e

iµ
(√

1−β2
)
x1e−µreiΦ(t,x1,r,θ) (h(θ))2 drdθdx1 = 0,

for all t ∈ (0, T ) and h ∈ C∞(Sy0(D)). Next, we vary h ∈ C∞(Sy0(D)) in the above equation to get∫
R

∫ τ+(y0,θ)

0

(
Ã1 + i

√
1− β2Ãr

)
(t, x1, r, θ)e

iµ
(√

1−β2
)
x1e−µreiΦ(t,x1,r,θ) drdx1 = 0 (4.11)

for all t ∈ (0, T ) and for all θ.

From here on, uniqueness of the convection term can be obtained by following exactly the same arguments
used in [29]. However, we prefer to give a sketch of the proof for the sake of completeness; please refer [29,
Section 6] for a detailed discussion.

Let ρ = (
√

1− β2)x1 + ir, then Φ(t, x1, r, θ) :=
(
Φ1 − Φ2

)
(t, x1, r, θ) satisfies the following equation:

∂Φ

∂ρ
+

i

2
√
1− β2

(
Ã1 + i

√
1− β2Ãr

)
= 0. (4.12)

For fixed θ, define Ωθ = {(x1, r) ∈ R2 : (x1, r, θ) ∈ M}. Then the identity (4.11) can be rewritten as
follows: ∫ ∫

Ωθ

2i
√

1− β2
∂Φ

∂ρ
eiµρeiΦ dρ ∧ dρ = 0,

which reduces to ∫
∂Ωθ

eiΦeiµρ dρ = 0.

Now following [28, 29], we find that there exists a non-vanishing holomorphic function F ∈ C(Ωθ) such
that eiΦ|∂Ωθ

= F |∂Ωθ
and its holomorphic logarithm satisfies (please see [28, Lemma 5.1]for more details)

logF = iΦ on ∂Ωθ.

Since logF is a holomorphic function on Ωθ, we get∫
∂Ωθ

iΦeiµρ dρ = 0.

From Stokes’ formula, we have ∫ ∫
Ωθ

i
∂Φ

∂ρ
eiµρ dρ ∧ dρ = 0.

Using equation (4.12), we obtain the following identity∫ ∫
Ωθ

(
Ã1 + i

√
1− β2Ãr

)
e
iµ

(√
1−β2x1+ir

)
dρ ∧ dρ = 0, for all θ and for all t.
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Let γy0,θ be the geodesic starting from y0 and in the direction θ. The above identity can be rewritten as∫
e−µr

[
f(γy0,θ(r)) + i

√
1− β2α(γ̇y0,θ(r))

]
dr = 0,

with

f(x′) =

∫
eiµ

√
1−β2x1Ã1(x1, x

′) dx1 and α(x′) =
n∑
j=2

(∫
eiµ

√
1−β2x1Ãj(x1, x

′) dx1

)
︸ ︷︷ ︸

αj

dxj .

By varying y0 on ∂D in Theorem 3.1 and using [29, Theorem 7.1], we obtain f = −µp (for µ small) and
α = −i√

1−β2
dp for p ∈ C∞(D) with p|∂D = 0. With these notations, we can simplify α as follows:

α(x′) =

n∑
j=2

F
(
Ãj

)
(µ
√

1− β2, x′)dxj =

n∑
j=2

−i√
1− β2

(∂jp) dx
j .

In the above expression, F(·) represents the Fourier transform with respect to x1. The analyticity of the
Fourier transform gives the following relation

∂kÃj − ∂jÃk = 0, j, k = 2, . . . , n.

For 2 ≤ j ≤ n, we have

−µ∂jp = ∂jf =

∫
eiµ

√
1−β2x1∂jÃ1(x1, x

′) dx1, using the definition of f

∂1αj = iµ
√
1− β2αj +

∫
eiµ

√
1−β2x1∂1Ãj(x1, x

′) dx1 = 0, as αj depends on x
′ only.

Use iµ
√

1− β2αj = µ∂jp in the above relation to get∫
eiµ

√
1−β2x1

(
∂jÃ1 − ∂1Ãj

)
(x1, x

′) dx1 = 0.

Thus, we have dÃ = 0 in MT , and consequently, we obtain that there exists a Ψ ∈ W 2,∞
0 (MT ) such that

Ã(t, x) = ∇gΨ(t, x) for (t, x) ∈ MT . This proves the required uniqueness for the convection term. Next,

we prove the uniqueness of density coefficient q. To prove this, we replace the pair (A(1), q1) by (A(3), q3),

by taking A(3) = A(2) in MT , where A
(3)(t, x) = A(1)(t, x) − ∇gΨ(t, x) and q3(t, x) = q1(t, x) − ∂tΨ(t, x).

From Proposition 1.3 and Equation (1.8), we get ΛA(3),q3
= ΛA(2),q2

. Using this in Equation (4.6), we get∫
MT

(q2 − q3)(t, x)u2(t, x)v̄(t, x) dVgdt = −
∫
Σ\Σ−,ϵ/2

gjkνj∂xku(t, x)v̄(t, x) dSgdt,

Again, we use the explicit expressions of u2 and v from Theorems 3.1 and 3.2 and take λ → ∞ together
with the estimate ∥Z2∥L2(MT ) ≤ C/λ, for some constant C > 0, independent of λ, to end up with getting∫

R

∫
R

∫
SyM0

∫ τ+(y0,θ)

0
q(t, x1, r, θ) (ϕ(t))

2 e
iµ

(√
1−β2

)
x1e−µreiΦ(t,x1,r,θ) (h(θ))2 dtdx1drdθ = 0,

where q(t, x1, r, θ) := (q2 − q3) (t, x1, r, θ) is assumed to be zero outside MT . Finally by varying ϕ ∈
C∞
c (0, T ), h ∈ C∞(Sy0(D)) and taking Φ ≡ 0 which is possible since A(3) = A(2) in MT and if Φ1 solves

(3.11) then we can choose Φ2 = Φ1 which solves (3.19), we get that∫
R

∫ τ+(y0,θ)

0
q(t, x1, r, θ)e

iµ
(√

1−β2x1+ir
)
dx1dr = 0, for all θ ∈ Sy0(D), β ∈

(
1√
3
, 1

)
and t ∈ (0, T ).
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Now, using the arguments from [29, Section 6], we can prove the required uniqueness of density coefficient.
Here, we provide a brief outline of the proof for completeness. We rewrite the above equation as∫ ∞

0
e−µr

(∫
R
eiµ

√
1−β2x1q(t, x1, r, θ) dx1

)
︸ ︷︷ ︸

f(γy0,θ(r))

dr = 0

=⇒
∫ ∞

0
f(γy0,θ(r)) exp

[
−
∫ r

0
µ ds

]
dr = 0

for all geodesics γy0,θ starting from the point y0. By varying y0 such that (x1, y0) /∈M for all x1 and using
the injectivity of the attenuated geodesic ray transform (with attenuation −µ) from [29, Theorem 7.1], we
get the following for sufficiently small µ∫

R
eiµ

√
1−β2x1q(t, x1, r, θ) dx1 = 0, for all r, θ and t.

Since the above identity is the Fourier transform of q with respect to x1; therefore, we have q ≡ 0 (that
is, q2 ≡ q3) in MT . Recall q3 = q1(t, x) − ∂tΨ(t, x), hence, we obtain q1(t, x) − q2(t, x) = ∂tΨ(t, x) for
(t, x) ∈MT , which completes the proof of the main theorem.
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