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ABSTRACT. We consider a partial data inverse problem for a time-dependent convection-diffusion equation
on an admissible manifold. We prove that the time-dependent convection term and time-dependent density
can be recovered uniquely modulo a known gauge invariance. There have been several works on inverse
problems related to the steady state convection-diffusion operator in Euclidean as well as in Riemannian
geometry settings; however, inverse problems related to time-dependent convection-diffusion equation on a
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1. INTRODUCTION AND STATEMENT OF MAIN RESULT

The paper deals with a partial data inverse problem related to a convection-diffusion equation on My :=
(0,T) x M where 0 < T < oo and (M,g) is a smooth n—dimensional (n > 2) Riemannian manifold
having smooth boundary M. We denote by ¥ := (0,7) x M as the lateral boundary of My and
OMr = ¥ U ({0} x M) U ({T'} x M) the topological boundary of Mr. We also denote by T'M and
T*M the tangent and cotangent bundle of M. For a convection term A € W1 (Mp; T*M) given by

n

A(t,z) := ZAj(t,x)dxj in local coordinates xy, z2,...,x, of manifold M and density ¢ € L>°(Mr), the
j=1

initial boundary value problem (IBVP) for the convection-diffusion equation on My is modeled by the

following IBVP for second order linear parabolic partial differential equation (PDE)

[0 > (00, + 4;) (VIglg?* (0, + A0)) +aut, ) =0, () € My
,x;:qb(ac , t €M (1.1)

where g7 = ((gij))1<ij<n denote the inverse of metric tensor g := ((9ij)),<; j<,,» l9] = det(g) and the
initial value ¢ and the Dirichlet data f are assumed to be non-zero. Throughout this article, we denote by

L 4 4 the following operator

Lagi= 0= > ——= (0, + 4(6.0) (Vigle™ (O, + A(t.2))) +alt,). (12)

=Vl

In this paper, we are interested in determining the convection term A and density coefficient ¢ from the
boundary measurements of the solution. To define the boundary operators, we need to have the existence
and uniqueness of a solution to the forward problem for IBVP given by (1.1).
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Motivated by [15, 49], we define the following spaces
Ko = {(fli=o, fls) : f € H'(0,T,H"(M)) N L*(0,T; H'(M))} and
Kz = {(fl=r. fls) : f € H" (Mr)}

where we refer to [25] for the definition of function spaces H™(0,T; H*(M)), for k,m € R. Now for
(¢, f) € Ko, it can be shown by following arguments from [15, 25, 43] that there exists a unique solution
we HY0,T,H Y (M))NL*0,T; H*(M)) of IBVP (1.1). Based on the existence and uniqueness of solution
and following [15, 40, 49], we observe that for any solution v € H'(0,T, H~'(M)) N L*(0,T; H'(M)) the
operator Ny qu given by

(Naqu, wlonz) = / (—udiw + (Vgu, Vg)g + 2u({A, V) + (5gA)uw — |Al2uw + quw) dVydt
M

- / u(0, z)w (0, x)dV,
M

is well-defined for all w € H(Mr) where OM7 := ({T'} x M)UX. Now if we assume the sufficient regularity
on the coefficients A, ¢ and Dirichlet data f, then as shown in [15] the operator N4 qu is given by

Nagu = (uler, [Du(t,2) + 20, A)y (0, 2)ut )] )

where v stands for the outward unit normal vector to OM and wu solves the IBVP given by (1.1). This
motivates us to define our input-output operator Ay 4 : Ko — K7 by

Aag(9, f) == Naqu (1.3)

where K7 stands for dual of K7 and w is solution to the IBVP (1.1) when the initial data is ¢ and Dirichlet
boundary data equal to f.

This work is concerned with the determination of time-dependent coefficients A and ¢ appearing in (1.1)
using the measurements of the input-output operator A4 4 on a proper subset of ¥ for the case when (M, g)
is an admissible manifold whereby an admissible manifold, we mean the following.

Definition 1.1. (Admissible manifold [11, 29]) We say that a compact Riemannian manifold (M, g) of
dimension n > 2 with boundary dM, is admissible if M is orientable and (M, g) is a submanifold of
R X (int(Mo), go) where (Mo, go) is a compact, simply connected Riemannian manifold with boundary dM
which is strictly convex in the sense of the second fundamental form and My has no conjugate points.

Some examples of admissible manifolds are the following (for more examples, see [29]):

1. Bounded domains in Euclidean space.
2. Any bounded domain M in R™, endowed with a metric which in some coordinates has the form

se1) = (g )

The assumptions for admissible manifolds are applied in various contexts, such as selecting a limiting
Carleman weight, calculating Carleman estimates, proving the injectivity of the geodesic ray transform,
and in many other places.

In order to state the main result of this article, we first need to specify the subset of dM where the
measurements are given. Now if we write x € M, as z := (x1,2') € R x My and p(z) := 21 then OM can
be decomposed into the two parts given by

OMy :={x € 9M: O,p(x) >0} and OM_ :={x € IM : Jdyp(x) <0}

where v(z) stands for outward unit normal to OM at x € OM and J,¢ denote the normal derivative of
 with respect to the metric ¢g. In this paper, we will be assuming that our boundary measurements are

is admissible.
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given on slightly bigger than half of 9M. To specify this portion of M, we take € > 0 small enough and
define M /5 by

OM, ¢/ = {m € OM : Oyp(x) > g} and OM_ ./ = {w €0OM : Oyp(x) < g} (1.4)
as OM_ /o is the small enough open neighborhood of 9M_. We denote the corresponding lateral part of
Y by E+ = (0,T) xOMy, Xy 9= (0,T) x OM 2, X := (0,T) x OM_ and X_ . /5 := (0,T) x OM_ /5.
We also denote My, = ({T'} x M)UX+ and OMr, o = ({T}x M)UX, /5. Now, using these notations,
we define the partial input-output operator by

ARl (g, f) = Naqulonr;, " (1.5)

Our aim in this article is to recover A and ¢ uniquely from the knowledge of A?, a;tml however, due to gauge

invariance, it is impossible to recover these coeflicients fully. Since this is the first work related to the
time-dependent convection-diffusion equation on manifolds therefore before stating the main result of this
paper, we first provide quick proof of the gauge invariance associated with our problem. In the Euclidean
setting, this has been well observed in prior works; see, for example, [15, 49] and references therein.

Definition 1.2. (Gauge Invariance) Let A®) € Wh(My) and ¢; € L=(Mr7) for i = 1,2. We say (AW, 1)
and (A®) | gy) are gauge equivalent if there exists ¥ € W02 "*°(Mr7) such that

AP (t,z) = AV(t,2) — V,U(t, ) and qao(t, x) = qi(t,z) — 8V (¢, ), for (t, ) € My.
Proposition 1.3. Suppose ui(t,x) is a solution to the following IBVP

8; — Jkil \F(amj + A ) (\/ngﬂk (axk + Al ’)) n ql}ul(t,x) —0, (t,2) € My 1
u1(0,2) = ¢(z), xe M (1.6)
ui(t,z) = f(t,x), (t,z) €X

and ¥ € W02’°°(MT), then ug(t,z) = eY&®uy (t,x) satisfies the following IBVP
( - @) (2) _

at - j,kZ:l m(axj + A > (J’?g]k (8ﬂ?k + A )) + QQ} 'LLQ(t,.’L') - 07 (ta x) € MT
ua(0,2) = o(x), x € M .7
ug(t,z) = f(t,z), (t,x) € X

where AP (t,2) = AW (t,2) — V,U(t,z) and qa(t,z) = q1(t,2) — O ¥(t,x). Now if Ay g4 fori=1,2, are
the input-output operators associated with u; and defined by (1.3) then

Ay (05 f) = Mg 4, (&, f), for all (¢, f) € Ko.
Proof. Substituting uy (¢, z) = e~ Y uy(t, z) in Equation (1.6), from simple computations, we get
0= LA 4 (€ "us(t,2)) = Ly0)_g,w0 awtiz(t;2) = Lye) gyua(t,z),  (tz) € Mr
and
ug(0,2) = e¥Oy (0,2) = p(z), z€ M,
ug(t,z) = Y0y (¢, 1) = f(t,x), (t,x) € .
Hence usg solves (1.7). Also, we have that

u2(T7 .CC) = elp(T’z)ul(T7 $) = ’U,l(T,JZ‘), VS M7 aV“Z’E = (elp(aulllul + 8Vu1) ‘2 = ayul’z7

and ((1/, A(2)>gu2> ‘E = <<Z/,A(1) Vg¥)ge ul) ‘E = ((1/, A(1)>gu1) ’E
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where in the above equations, we have used the fact that ¥ € W02 *°°(Mr). Thus combining the above
equations together with (1.3) we get

A (05 F) = Mg 4, (8, f), for all (¢, f) € Ko.

With this preparation, we are ready to state the main result of this paper as follows.

Theorem 1.4. Let (M, g) be an admissible manifold. Let AW ¢ WL (Myp; T*(M)) for i =1,2 given by
A® (t,z) = ZAg-i) (t,x)dz’, in local coordinates on (M, g) and q; € L>®°(My) for i =1,2. Suppose u; for

j=1
i =1,2, is solution to (1.1) when (A, q) = (AD, ) fori=1,2 and A%Tgl are input-output operator given
by (1.5) corresponding to u; for i =1,2. Now for e > 0 small enough if
ial ial
AR (0, ) = A (6, F), for all (6, f) € Ko (1.8)

then there exists a function U € WO2’O°(MT) such that
A(l)(tax) - A(z)(t71‘) = vg\I/(t’x) and QI(tv .’IJ) - (D(t,.ﬁ) - 8t\I/(t,iL‘), fO?" (t,il]) € Mr
provided AV (t,z) = AR (t, x), for (t,z) € X.

Remark 1.5. (1) Observe that the measurement data used in Theorem 1.4 is an input-output map,
unlike the usual Dirichlet to Neumann (DN) map used in the Euclidean setting. This is due to the
fact that in our boundary Carleman estimate stated in Theorem 2.1, we do not have the estimate
on weighted L? norm of solution u at t = T which is because of the choice of weight function
o(t,x) := N2B%t + Azy where 8 € (0,1) while in Euclidean setting one can actually take § = 1
which helped one to the Carleman estimate with a bound on the weighted L? norm of the solution
uat t = T. We refer to [15, 51| for details about it. However, if we assume the coefficients are
small enough then we can obtain the boundary Carleman estimate (see Theorem 3.1 in [49]) with
a bound on the weighted L? norm of the solution w at t = T" and can determine the coefficients
from the knowledge of DN map measured on a suitable subset of X.

(2) We observe that because of gauge invariance proved in Proposition 1.3, it is impossible to prove
that A® = A® and ¢ = ¢ in My from the given hypothesis of Theorem 1.4. As far as the
uniqueness issue is concerned, gauge invariance guarantees that the result obtained in Theorem 1.4
is optimal.

(3) Unique recovery of A and ¢ is also possible with some extra conditions on the unknown vector field
A. For instance, if A is divergence-free, that is, d;A4 = 0 in Mr, then one can recover both A and ¢
uniquely in Mp. This divergence-free condition has been exploited in earlier works to get the full
recovery, please refer [49, 51].

(4) On the other side, if we assume that the vector field A is time-independent, then recovery of A
is possible up to a potential of the form V,¥(x) and ¢ can be fully recovered in My. The proof
follows similarly as we have done for Theorem 1.4.

The problem considered in this article can be put under the umbrella of Calderén type inverse prob-
lems for parabolic partial differential equations (PDEs), which was initially proposed by Calderén in [14]
for elliptic PDEs and studied by Nachman [44] in two dimensions and by Sylvester-Uhlmann in [54] in
dimension three and higher. Analogous problems for parabolic and hyperbolic PDEs have been studied in
[1, 31, 45, 48]. Choulli-Kian in [21] derived a stability estimate for recovering the time-dependent coeffi-
cient, which is a product of functions depending only on time and only space variables, from the boundary
measurements. We also refer to [20], where an abstract inverse problem for parabolic pde is studied.
All these works are concerned with the recovery of zeroth order perturbation of elliptic, parabolic, and
hyperbolic PDEs from full boundary data. In [22], the recovery of general time-dependent zeroth order
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perturbation of heat operator from partial boundary measurements is considered. Inverse problems of re-
covering the coefficients appearing in the steady state convection-diffusion from full and partial boundary
measurements in Euclidean geometry have been studied in [12, 17, 19, 24, 28, 38, 46, 47, 52]. Recovery of
first-order perturbation of a parabolic pde from final and single measurement has been studied in [16] and
[18] respectively. In [8], stable recovery of time-dependent coefficients appearing in a convection-diffusion
from full boundary data has been studied. Choulli-Kian in [22] proved a stability estimate for recover-
ing a time-dependent potential from partial boundary data, and motivated by their work, authors of [49]
proved the unique recovery of time-dependent coefficients appearing in a convection-diffusion equation
from partial boundary data. In [49], a uniqueness result is proved with a smallness assumption on the
convection term, which is later on removed in a recent work of [51] where stability estimates for recovering
the time-dependent coeflicients of convection-diffusion equation from partial boundary data are derived.
We also refer to [8] and [9] where stability estimates for convection-diffusion equation from full and par-
tial boundary data is studied, respectively. Recently, in [15, 27|, inverse problems related to nonlinear
convection-diffusion equation is studied. In all the above-mentioned works, the inverse problems of recov-
ering coefficients appearing in parabolic PDEs from full and partial boundary measurements in Euclidean
geometry are considered. The inverse problems related to steady-state convection-diffusion equation in
Riemannian geometry are considered in prior works (see, for example [11, 29, 32, 41]) however the recovery
of time-dependent coefficients appearing in parabolic PDEs in Riemannian geometry has not been consid-
ered in prior works, and this is the main objective of this paper. To the best of our knowledge, this is
the first work that considers the partial data inverse problem for recovering both first and zeroth order
time-dependent perturbations of evolution equations in Riemannian geometry. Next, we mention works on
inverse problems related to hyperbolic and dynamical Schrodinger equations, which are closely related to
the study of this work. Inspired by [13] and [5, 6] authors of [33, 34, 35, 39, 42] studied the unique recovery
of time-dependent coefficients appearing in a hyperbolic pde from partial boundary measurements. We
also refer to [2, 3, 4, 7, 10, 26, 36, 37, 50] for inverse problems related to hyperbolic PDEs and dynamical
Schrédinger equation in Euclidean as well as in Riemannian geometry, where time-dependent coefficients
are recovered from full boundary measurements.

The rest of the article is organized as follows. In section 2, we derive the boundary and interior Carleman
estimates which we will use in section 3 to construct the exponentially growing as well as decaying solutions.
The main Theorem 1.4 of the article will be proved in section 4. Finally, we conclude the article with
Acknowledgements.

2. BOUNDARY AND INTERIOR CARLEMAN ESTIMATES

The present section is devoted to prove boundary and interior Carleman estimates. The boundary
Carleman estimate will be required to estimate the boundary terms in the integral identity where there
is no measurement, and the interior Carleman estimate will be required to construct the geometric optics
solutions (GO) for L4, and its formal L?-adjoint. For a compact Riemannian manifold (M,g) with
boundary denoted by OM, we denote by dV, the volume form on (M, g) and by dS, the induced volume
form on M. Then the L?-norm of a function u on M and f on OM are given by

1/2 1/2
[ullL2(ar) == </MIU($)|2 dVg) and || fllz2nr) = </8M|f(m)|2 d5g> , Tespectively.

We denote by L?(M) as the space of all functions u defined on M for which [Jul| 2.y < oo and L?(M)
as the space of all functions f defined on M for which || fll 2@a) < oo. Then (L*(M), |||l z2(ar)) and
(L2(0M), || 12(0 M)) are Hilbert spaces with respect to the inner-products defined by

f. 9 e an) = /M f(@)9(@) v,
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and
(fs9) r200m) = /8M f(@)g(x) dS,

respectively.
We state the boundary Carleman estimate as follows.

1
Theorem 2.1. Let (M,g) be an admissible manifold. For (3 € (\/§,1>, let o(t,r) := \2B%t + Az,

Ae (Wl’OO(MT))n, and q € L>®(Mr). Then there exists a constant C > 0 depending only on M, T, A and
q such that

_ _ 2 _ . —
N le?ulFaarg + €7V gull o p, + lle™?TIVou(T, .)||§2(M)+A/Z e *?|0,u(t, x)[*v1 dSydt
* (2.1)
<C (||€_¢£A,qu||%2(MT) + X2 [le?TIu(T, )12y +A/ e 0, u(t, z)?|w| dsgdt)
¥

hold for X large enough and for all u € C*(Mr) satisfying the following
u(0,2) =0, forx e M andu(t,z) =0, for (t,z) € X.

The vy appearing in (2.1) is given by vy := (v, %)Q.

Proof. In order to prove the weighted H' — L? estimate given by (2.1), we need to convexify the Carleman
weight . This convexification will help us to absorb the first-order perturbation A appearing in L4 4,
which has been used in [15, 51] for Euclidean case and [29] for anisotropic magnetic Schrédinger operator.
Now for s > 0, we denote the convexified weight function by ¢s and define by

s(zp + 20)? s(xqy + 20)?
2 2 ’
where £ is a positive real number such that x; is varying in [—/, ¢] and the existence of such an ¢ is assured

by the compactness assumption on M.
A direct computation gives

Oyps = /\252, Or s = A — s(x1 + 20), 8314,05 = —s, and |8ﬂ;1g08|2 = (A —s(x1 + 26))2 . (2.3)

ws(t,z) == @(t,x) — = \26%t + \zp — (2.2)

Before we proceed further, let us observe that
Lago(t,z) = 0w(t,z) — 92 v(t,x) — Agyu(t, ) — 2(A(t, z), Vyu(t, 2))g + d(t, 2)v(t, x)

where (-,-)g and V, denote the inner-product and gradient operator w.r.t. metric g respectively and
q(t,x) == q(t,z) — d4A(t,x) — |A(t, x) 3, here in expression of ¢, d,A given by

1 < .
S, A = —— 9: (g7%+/|g|A
9 \/@jgl a(g 9] k)

is known as the divergence operator w.r.t. to metric g and |A|§ = sz:l gjkAjAk. With this, we define
the conjugated operator Ps with a convexified weight function ¢ by

Pow:=e"%Ly,(e"v) =e % (8t — (951 — Ay —2(A,Vy)g+ (j) (e?*v). (2.4)
Upon expanding the above expression, Ps; will take the following form

Psv(t7 (L‘) = (at + (81?305)) U(tv 1‘) - (831 + 28x190saac1 + (ax1905>2 + 83%1 905) v = Agov(tv x)
— 2(A(t,z), Vgu(t,z))g — 2(A(t, z), Vaps(t, x)) gu(t, z) + ¢(t, x)v(t, x).
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Use relation (2.3) in the above equation to get
Po(t,z) = dw(t, ) + N2 %u(t, x) — (851 4+ 2(\ = s(x1 + 20))0y, + (X — s(x1 + 20))* — s) v(t, x)
— Agu(t,z) — 2(A(t, ), Vau(t,x))g — 2 (A — s(x1 + 20)) g ALt z)u(t, ) + G(t, 2)u(t, x).

Now if we define P;, P» and P3 by
Po(t,x) := (0w — 2(X — s(x1 + 20))0y, v + 4sv) (L, x),
Pyu(t,x) == (—83111 — Agyv — )\2(1 — 62)1) + 2As(z1 + 20)v — sz(xl + 26)21) — 3311) (t, )

= (—831 — Agy + K(21)) v(t, ), where K(z1) := 2Xs(z1 + 20) — N1 = B%) — s% (w1 +20)% — 3s
Pyu(t,x) == —2(A(t,x), Vyu(t,x))g — 2 (A — s(z1 + 20)) g AL (t, )t x) + §(t, 2)v(t, x)
then one can check that Psu(t,x) has the following compact form

Po(t,z) = Piu(t, ) + Pou(t,x) + Psu(t, x). (2.5)
Our first aim is to estimate the L? norm of P,v on My, therefore we define I, by
I, = / Po(t, 2)[? dV, () dt = / \PLo(t, ) + Pao(t, z) + Pyo(t, 2)|* dVydt
My M

1
> / (Pro(t, z) + Pyu(t,x))? dV,dt —/ |P3v(t,z)|* dV,dt
2 MT MT

> Pyu(t,z)Pyol(t, x) dngt—/ |P3o(t,2)|? dV,dt.
MT MT

This gives us

Is > Pyo(t, z)Pu(t, x) dngt—/ |Pyu(t, z) | dV,dt .
My Mrp (2.6)

-~

]5,1 15,2

We aim to estimate the right-hand side of (2.6). To do that, we start with the first term in the above
inequality and, therefore consider

Pro(t,2)Pyo(t,z) = —0yw(t,x) (02,0 + Agyv) (t, ) + K(z1)v(t, 2)dpv(t, x) — dsv(t, x) (92, + Agy) v(t, )
+ 45K (z1) [o(t, @) + 2(\ = s(21 + 20)) 0y, v(t, @) (92,0 + Agyv) (¢, )
—2K(z1) (A — s(z1 + 20))v(t, )0z, v(t, x).
Now consider I from (2.6)
I 1 = Pro(t,z)Pou(t,z) dVydt = — Ov(t, ) (8%11) + Agyv) (t, ) dVydt
MT MT

1
+ 4s K(z1)|o(t, z)* dV,dt + / K(x1)0|v(t, )[* dV,dt
MT 2 MT

- 48/ v(t, x) (3311) + Agov) (t, ) dVydt
Mt

+2 / (A — s(21 + 209y, 0(t,2) (82,0 + Agyv) (t,2) dVd
Mt

— K(x1) (A — s(x1 + 26))0, [v(t, 2)|* dVydt
Mt

=L+ L+ I3+ I+ Is + I
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where
I = — Owv(t, x) (8:%11} + Agyv) (t,z) dVydt; I = 45/ K(x1)|o(t,z)|* dV,dt
MT MT
1
I3 = = K(m1)8t|v(t,a?)\2 dVydt; 1y := —48/ v(t, ) ((95111 + Agov) (t,x) dV,dt
2 Mr Mt

=2 [ O s(or 4 2000, 0(t0) (02,0 + Ayp0) (8.2) dVids
M

Iyi=— [ K(e1)(h = s(@1 +20)9,, o(t,2)* dVydt.
Mt

In order to estimate I, 1 in (2.6), we need to estimate each I; for 1 < j < 6. To estimate these I]/-S, we use
integration by parts repeatedly along with initial and boundary conditions on v. Consider

1
L= [ uwita) (02 0+ Ago) (t,2) dVydt = © / V,0(T, )2 v, (2.7)
M 2 M g

Iy =4s K(z1)|v(t, =) dV,dt
Mt

(2.8)
_ _43/ (A2(1— B2) — 2Xs(w1 +20) + 521 + 20)° + 35) [o(t, 2) > dVdt.
Mr
1 2 1 2
I3 = - K(x1)0|v(t, z)|* dVydt = = | K(x1)|v(T, x)|*dV,
2 Mr 2 M
1
_ 2/ (“A2(1— B2) + 22s(ay + 20) — (21 +20)% — 38) [u(T, )| V.
M
Recall ¢ < (x1 + 2¢) < 3¢, therefore choosing A large enough, we obtain
I3 > —CN|ju(T, -)H%Q(M), for some constant C' > 0 independent of A. (2.9)
Next, consider
I, = —45/ v(t,x) (02,0 + Agyv) (¢, z) dVydt = 45/ ]ng(t,:n)g dVydt. (2.10)
Mt Mt

The next integral in the line is
Is =2 / (A — s(1 + 20y, 0(t, ) (82,0 + Agyv) (t,2) dVdt
M
= 2/ (A= s(z1+20))0,,v(t, ) Agu(t, z) dVydt.
Mt
Using the integration by parts, we have
I = —2/ 8x1v(t,:v)<vgv,vg (A — s(z1 + 2z))> dVydt
My g
- 2/ (A — s(z1 + 2£))<vgv, amlvgu> dVdt
My g

+ 2/ (A —s(x1 +20))05,v(t, x)0,v(t, ) dSydt
b
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where v(z) is outward unit normal vector to OM at x € M, d,v(t,x) stands for the normal derivative
with respect t0 « of v at (¢t,x) € (0,T) x OM and dS, denotes the surface measure on M. Again using
the integration by parts, we have that

0
I5 = 2s /MTlarlv(t, z)|? dVdt — /E(A — s(z1 + 20)){v, a—m>glvgv(t,m)]3 dS,dt
— 3/ ]ng(t,a:)@ dVydt + 2/ (A= s(z1 +20))05,v(t, x)0pv(t, ) dSydt.
M~ %

0

o 0
Now v|(o1)xom = 0, implies that Vyvly = (8,v) v and 9, v|s = (Vgo, a—xl>g|g = (v, 87561>9 = J,vvy.
Using these, we get
Is = s/ (|05, v(t, z))? — |Vgoul(t, m)|30) dVgdt + / (A = s(z1 +20))|0,0(t, 2)|*v1 dS,dt.
My b
Combining I5 and I, we have
L+ Ts 55/ 100, 0(t, x)|2dngt+38/ Vo0t 2) 2, dV,ydt
My My
+ / (A — s(z1 +20))|0,v(t, z)|?v1 dSydt (2.11)
b
> 35|Vl ary) + / (A = s(@1 +20)|00(t, 2)[20n dS,dt.
b
Next, we consider the last term of I 1
Is = — K(z1)(A — s(21 + 26))0y, [v(t, 2)|* dV,dt
My
:/ (0 — s(a1 + 20)) [v(t, )20, K (1) dvgdt—s/ K () |o(t, 2)2 dVdt
M~ Mt
= 23/ (A — s(z1 + 20))? Jo(t, z)[* dV,dt
Mt
+ s/ (A2(1 = B%) — 2As(21 + 20) + s*(z1 + 20)% + 3s) |v(t, 2)|* dV,dt.
Mt
After simplifying, we get
Is = s\ (3 — ﬁ2)/ lu(t,2)|? dVydt — 6)\52/ (z1 + 20)|v(t, x)* dV,dt
Mr Mr (2.12)

+ 352/ (s(er + 202 + 1) Jo(t, 2)[? dVdt.
Mr
Next, we estimate I 2 in the following way:

Lo = / | Pu(t, x)|2dV,dt

Mt
2
= / )—2<A(t, z), Vau(t,z)), — 2 (X — s(x1 + 20)) g*F Ap(t, 2)v(t, 2) + §(t, x)v(t, )| dV,dt

My

< 8l Al (a1 Vol T2 017y + 8N NANE oo (a0 22 0y + 20w a1y 101201y (2.13)
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Combining I2, Iy, I5, Is, and I, 2 in the following way:
2
I+ I+ Is + Is — Lo = N (8 (38% = 1) = 8[| AllT oo (ary — /\QHQH%w(MT)> 101172 azy
+ (terms having lower power of \) ||UH%2(MT) + (38 - 8HA||%00(MT)) ||ng||%2(MT)
+ / (A — s(x1 + 20))|0,0[*vy dS,dt.
b

After choosing s and A large enough together with using the fact that 3 € (1/v/3,1), and a combination
of all estimates obtained above, will amount to have the following estimate on HPSUH%Q( M)

HPSUH%Q(MT) >C (S)‘szH%?(MT) + [[Vgu(T, ')H%Q(M) — A?lo(T, ')”%2(M) +s va’UHi?(MT)

+A / |0,v(t, )21 ngdt>
>

where constant C' depends only on A, ¢, T and M.
This provides the estimate for the operator P; = e“ps(m)ﬁA,qe‘Ps(t’x). To obtain the required Carleman
estimate, we put v(t,z) = e~ ?stPy(t, x)

(2.14)

lle™#* Laqulfa gy +NClle™# TIu(T, [ Faary + A/ e Oyult, ) [*|v1| dSydt

_ _ : - 2
> sN?le T2 (pppy + e TIVGu(T, ) F2ary + 8 [l Vgull 1o o,
+)\/ le™?= 0, u(t, 2)|*v1 dS,dt.
Pt

s(x +2Z)2
Finally, using the expression for ¢(¢, ) and the fact that e~ E has a strictly positive lower and upper

bound, we get the following required estimate

_ _ 2 _ . _
Nlle™PullZaarn) + e Vgul[ o agyy + e EIVgu(T, 1) + A / e |, u(t, x)[*vy dS,dt

P

<c (|re%A,quH%z(MT) + N TIu(T, ) 2 + A /E 2|9 u(t, z) | dsgdt)

for some constant C' > 0 independent of A. This completes the proof of the theorem. O

Our next aim of this section is to derive the interior Carleman estimates in a Sobolev space of negative
order for L4, and its formal L%-adjoint L, Before going to state and prove the interior Carleman
estimates, we first give some definitions and notations for large parameter A-dependent Sobolev spaces
of arbitrary order. This will help us to represent the Carleman estimates in a nice form. Let us begin
by assuming that (M, g) is embedded in a compact Riemannian manifold (N, g) without boundary and
denote by Ny := (0,T") x N. Following [29], we denote by J* for s € R, the large parameter A-dependent

pseudo-differential operator of order s on (IV,g) and it is defined by J* := ()\2 — Ag)s/ 2, Using this, we
define the large parameter A-dependent Sobolev space H3(N) for s € R, as the completion of C*°(N) with
respect to the following norm

[ull s vy == 117l L2 vy

Since (N, g) is a Riemannian manifold without boundary therefore the dual of H{(N), for any s € R can
be identified with H; *(N). Also note that for s = 1, we have that

HUH%;(N) = )‘ZHUH%Q(N) + ||vg“H2L2(N)'
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Now following [25] the time-dependent Sobolev spaces L*(0,T; H5(N)) is defined as the set of all strongly
measurable functions w : [0,7] — H$(N) such that

T 1/2
ol = ([ It g ) <o (2.15)

Then L?(0,T; H;(N)) is a Banach space with respect to the norm 1|22 (0,75 (v)) defined by (2.15) and
the dual of L?(0,T; H§(N)) can be identified with L*(0,T; H, *(N)). If we take v € C°(My) in (2.14)
then we have the following estimate

HU”%P(O,T;H}\(N)) < C”'C@UH%%O,T;L?(N)) (2.16)

where ¢ is same as in Theorem 2.1 and L, := e”¥L4,4e¥. Now if we denote by L7, := e¥L} e™¥ where
L q stands for a formal L2-adjoint of £ A,q then using the arguments similar to the one used in deriving

(2.14), the following estimate
ellZ2 0 221 vy < ClEGUIE2 072200 (2.17)

holds for all u € C°(Mr) where ¢ is same as in Theorem 2.1 and constant C' > 0 is independent of A and
u.

In order to construct the suitable solutions to L% qu=0 and L4 4v = 0, we need to shift the index by
—1 for spacial variable in (2.16) and (2.17) respectively, which we will do in the following lemma.

Lemma 2.2. Let L, := ewﬁAq e ¥, and Ly = e YLaqe?, where L denote the formal L?-adjoint of
Lag and ¢, A and q be as in Theorem 2.1. Then there exists a constcmt C > 0 independent of A and v
such that

vl 220, 73;22(v)) < C”E*@UHL2(07T;H;1(N)) (2.18)
holds for all A large enough and for all v € C°(Mr) and

1ol 2 (0,22 vy < ClILGVI 20,1111 () (2.19)
holds for all X\ large enough and for all v € C°(Mr).

Proof. First, we establish (2.18), and the proof for (2.19) can be carried out in a similar manner. We begin
with the inequality:
2 * 0112
HU||L2(0,T;H;(N)) < CH‘C@U”B(O,T;L?(N))

holds for all v € C¢°(Mr). Next, we shift the index by —1 in the above estimate. Let w € C°(Mr) and
consider the adjoint operator defined as:

n

1
= (=0 =Y ——(0,, — A Oy — A
ig=( > (0, = AWV lgle™ (00 = 40) + 7).

jk=1

For s > 0, define the convexified weight function ¢, as follows:

s(z1 + 20)? _O28% 4 Ay & s(z1 + 28)2.

@S(ta .T) = Qp(t, li) + 9 9

Let P} —e“”sﬁ* 4© ~%s, we have
Piw = e (=0, — 8 — DNgy +2(A, V) + q*) (e % w)

where ¢*(t,z) :=q(t,x) + 04A(t, x) — |A(t,a?)\g.
Expressing P;w as a sum of three components:

Piw:= Pfw(t,z) + Pyw(t,z) + P;w(t, x)
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where
Prult, ) = (- (9tw 20\ + s(21 + 20))p,w + dsw) (£, 2):= —Oyw(t, z) + P w(t, )
Piw(t,z) == (=07, w — Agyw — A2(1 = 82w — 2Xs(z1 + 20w — 8% (21 + 20)*w — 3sw) (¢, ),
P w(t, ) = 2(A( x), Vow(t,z))g — 2 (A + s(x1 + 2¢)) g R ALt 2)w(t, x) + G (t, 2)w(t, z).

where Py w = 2 (A + s(x1 +20)) Oy, w + 4sw. Now if we denote the symbols of the pseudo-differential

operators E*,PZ*,J and J~! by p1, D5, J and Gt

0 (2,8) = 2N+ s(z1 +20)) & + 4s, p5(z, &) = \{]g (1 — 52) —2Xs(x1 +20) — 82(331 + 26)2 —3s
JEN) = (A2 +€2)"? and 571, N) = (A2 + Jg2) 7

where |£|3 = |§'|£2]O stands for the symbol of —A, := —831 — Ay, (see [55, Page 353]). Now since
both J and J~! commute with ; appearing in P; therefore using the properties of the composition of
pseudo-differential operators ( see [30, Theorem 18.1.8] and [15, Proposition 4.1]), we have

J NP} + P)J'w = (P} + Py)w + E\xw

respectively then they are given by

where FE) is the pseudo-differential operator of order 1 with symbol given by

i1 (2istr — 2Xs — 26% (21 + 20)) (\ + [¢[2) "% + 0 (1) (2.20)

Ex(,8) = ——=%
(A2 + \g@)m (A2+¢12) 00

Also note that while deriving (2.20), we have used the fact that /151* + P5 depends only on z; and now
using (2.20) along with the properties of pseudo-differential operators, we have

IExw| r2(0.7:12(n)) < Cs*llwllr20,m02(v) (2.21)
holds for all C2°(Myp). Combining the above estimates along with the triangle inequality, we get

||(P1* + PQ) w||L2(OTH (N)) — H‘] (Pl* + PQ*)leH%?(O,T;LZ(N))

> §||(P1* + PZ*)U}H%Q(O,T;LQ(N)) - HEAWH%?(O,T;LQ(N))'
Following the same calculations as done for the Carleman estimate (2.1) together with the estimate (2.21)

and taking ;‘—; sufficiently large, we obtain

I(Pf + Py)J wHLz 0T H; (V) > (SHV!]U}H%Q(O,T;LQ(N)) + S)‘2HwH%2(O,T;L2(N))> - CS4HwH%2(O,T;L2(N))

(2.22)
2 ¢ (SHVW”%%O,T;LZ(N)) + SAQHWH%%O,T;L?(N))) : (2.23)
Also using the expression for P3 given above and boundedness of A and ¢, we obtain the following estimate
125 T w7 0THT (V) S CUAIZNV w1207 12y + A INAI 0l 2007, 123y + 1T 3610120 722 v)))
(2.24)

Hence using (2.22) and (2.24) and choosing s and A large enough, we get

HP;kjleLQ(QT;H;l(N)) > CHwHLQ(O,T;Hi(N))'

Now, consider x € CSO(M) such that y = 1 in My where M C M; C M. By taking w = yJ'v in the

above estimate and using the estimates

_ C
(1 —x)J 1UHL2(0,T;H§(N)) < ﬁH”HL%O,T;L?(N))
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and
_ 71 < C
1l z20mi22(v)) = 197 0l 20, 0sm3 (vy) < Wl 2 vy + 2 10l 20,722 (v
we get
* * 7l C
||PS/UHL2(O7T;H;1(N)) > ||PsJT wHL?(o,T;H;l(N)) - FHUHLQ(O,T;H(N))

C
2 l[wllzerimt vy = 2 lvllzz ez
> Cllvll2(0,m;22(n))

s(z1+28)2

holds for A large. Now, using the expression for ¢(t,z) and the fact that e™ 2 has a strictly positive
lower and upper bound, we conclude that

””HLQ([O,T];LQ(N)) < CHﬁ%*OUHLQ(QT;H;I(N))
holds for all A large enough and for all v € C2°(Mr). This completes the proof of (2.18). O

The above estimates, together with the Hahn-Banach theorem and the Riesz representation theorem,
give the following solvability result, proof of which follows from [49, 51].

Lemma 2.3. Let ¢, A and q be as before and X > 0 be large enough. Then for F € L?>(Mr) there exists
a solution v € HY(0,T; H-Y(M)) N L?(0,T; H'(M)) of

Low(t,x) = F(t,x), (t,x) € My
satisfying the following estimate
lull 20,7501 (vr)) < CIF 2007 (2.25)

for some constant C' > 0 independent of X\ and u and there exists a solution v € H*(0,T; H*(M)) N
12(0,T; HY(M)) of

Low(t,x) = F(t,z), (t,z) € Mr
satisfying the following estimate

10l L2 o,rm (ary) < ClF L2 (aay) (2.26)

for some constant C' > 0 independent of A and v.

Proof. The proof for L, is presented below, and the proof for L7, can be established using analogous
arguments.
Consider the subspace S of L2(0,T; H, ' (N)) defined as

S = {Lyw(t,z) :w e CF(Mr)}.
Define the linear operator T' on S by

T(Chz) = / 2t 2)F{L7) dVydt, for F € L*(My).
Mr
For any L7z € S, we have

T(L£52)] < /M |28, )| E' (¢, 2)| dVydt < ||2]| 2 (g 1l £2 (2t
T

Using the Carleman estimate (2.18), we obtain

IT(L52)] < CIFN 2y €52 20,7 (v
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This inequality holds for z € C°(My). By the Hahn-Banach theorem, extend the linear operator T' to
L?(0,T; H;l(N)) Denote the extended map as T and note that it satisfies the inequality

1Tl < CIF[l 2 (arp)-

By the Riesz representation theorem, as T is a bounded linear functional on L2(0,7T; H N ! (N)), there exists
a unique u € L?(0,T; H}(N)) such that

T(f) = Fo ) 2o e vy 2oy vy for f € L2(0, T3 HYH(N),
with
HUHLZ(O,T;H/{(N)) < CHFHL2(MT)-
Now, for z € C°(Mr), choosing f = L7,z in the above equation, we get L,ou = F.
Using the expression for £, and the fact that u € L?(0,T; HY(M)) and F € L*(My), we conclude that
Owu € L*(0,T; H-Y(M)). Hence, we have u € H'(0,T; H~1(M)) N L*(0,T; H'(M)).
O
3. CONSTRUCTION OF GEOMETRIC OPTICS SOLUTIONS

In this section, we aim to construct the exponential growing and decaying solutions to the convection-
diffusion operator £ 4 4 and its L?-adjoint £f47q, respectively. Construction of these solutions will be proved
with the help of the interior Carleman estimates in negative order Sobolev spaces stated in Lemma 2.2.

3.1. Construction of exponentially growing solutions. In this subsection, we will construct the
exponential growing solutions to L4 qu(t,z) = 0, in M7 which take the following form

u(t,z) = e (T, (1 2) + By (1, 7)) (3.1)

where ¢ is the same as in Theorem 2.1 and v, T;; will be constructed using the WKB construction in such
a way that the correction term R, ) satisfies the following

et L, <€(<P+i¢> Rg,A(t,x)> = F\(t,z), (t,x) € My

for F\ € L*(Mr) such that [|F)||f2(as) < C, for some constant C' > 0 independent of A and Ry » satisfies
”Rg’)\HLQ(QT;H)l\(M)) < C||Fxll2(ayy, for some constant C' > 0, not depending on A. More precisely, we
prove the following theorem.

Theorem 3.1. Let My, L4 4 and ¢ be as before. Let (D, go) be a simple manifold satisfying Mo C D and
there exists a yo € D such that (x1,y0) € M for all z1. Now if (r,6) denote the polar normal coordinates
on (D, qgo), (x1,7,0) denote the points in M and Ay and A, are components of A in x1 and r coordinates
respectively, then for A large enough the following equation

Lagv(t,z) =0, (t,z)e Mrp
has a solution taking the following form
u(t,z) = eP+iv (Tg(t,xl,r, 0) + Rg7,\(t,x1,r,¢9)) (3.2)
where
= A1 = B2)r, and Ty(t,z1,r,0) = qﬁ(t)ei“(@ >x1e_“reiq)l(t’wl’r’g)b(r, 0)~4h(6)

here ¢ € C°(0,T), p is a real number, ®1 is solution to

D1 +i(v/1= 30,01 + (—idi + (VI = F)A,) =0
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and Ry » satisfies the following
L, (ewRM) (t,2) = —eV Lo T,(t, ), (t,z)€ My
and ||R97>\||L2(0,T;H§(M)) < C for some constant C' > 0 independent of \.

Proof. Following [29], if we denote p := ¢+ i1, then simple calculations show that the conjugated operator
L, = e PLy e’ will have the following expression

Lp=Lag+ (9p— Dgp — 7*0ip0kp) 2 (970;00% + 97*0;pAr)

Using p = ¢ + i1, and ¢ = A\23%t + Az, we get
Ly =Lag+ (V282 = N+ g 0,000 i
_ (2/\81 + 2ig*0j1p0), 4 20N A1 + 2igTFO;h Ap + i Ay + 2iNY — i@tw) ) 33

Now u given by (3.1) solves L4 4v = 0 if and only if £, (e7Pu) = 0. This will give us
LoRga(t,2) = —LaTy(t,w) — (X287 = N2+ ¢ 0,000 ) Ty(t, )
+ (2A81 + 2ig7% 090k + 2MA1 + 2ig7* 00 Ay + i A h+2iNO1 ) — iat¢) T,(t,x), (t,x)€ Mry.
(3.4)
In order to have ||Rg,/\HL2(0,T;H;(M) < C, we choose ¢ and T} such that
Op =0, ¢Fojpop = N*(1 - B°) (3.5)
and
(2)\81 + 2ig7R 9,00y, + 20 Ay + 2ig* D0 Ay + mngmlw) T,(t,x) =0, (t,2) € M. (3.6)

To solve equations (3.5) and (3.6) for ¢ and T,, we use the polar normal coordinates (r,6) on (D, go)
centered at yg € D as mentioned in statement of theorem. We consider the polar normal coordinates on
D which are denoted by (r,0) and given by zo = exp,, (rf), where r > 0 and 0 € S,(D) := {v € Ty, D :
|v|g = 1}, here T, D denote the tangent space to D at yo € D. Then using the Gauss lemma (see Lemma
15 in Chapter 9 of [53]) there exists a smooth positive definite matrix P(r,#) with det(P) := b(r, ) such
that the metric go in the polar normal coordinates (r,#), takes the following form

go(r,0) = [(1) - 9)] . (37)

Now since the points in M are denoted by (z1,r,6) where (r,6) are polar normal coordinates in (D, go),
therefore after using the previous form of gg, the metric g has the following form

10 0
g(xy,m,60)= [0 1 0 . (3.8)
0 0 P(r0)

Using (3.8), we see that

P(z) = (A1 = B2)disty(yo, z) = (A1 — B2)r, (3.9)

solves equation (3.5) on M. Using this choice of ¥ and form of g given by (3.8) in equation (3.6), we have

(al + (V1= )0, + A1 +i(V1= B) A, + (/1= 52)‘%(’"’9)) T, (t, 1,7, 6) = 0.

4b(r, 0)
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Now, one can check that the solution of the above equation can be given by

Ty(t,x1,7,0) = ¢(t)ew<v 1752)3:1e‘“re@l(t’x”"’e)b(r, 0)~/4h(0) (3.10)

where ¢ € CX(0,T), p € R, h € C®(S,,(D)) are arbitrary but fixed and ®1(t,x1,7,6) satisfies the
following

(101 +i (VI=52) 0,01 + (—ids + (VI = P)4,) =0. (3.11)
Now using (3.9) and (3.10) in (3.4), we get
LoRga(t,x) = =L Ty(t,x), (t,x)€ Mr
But L,Ry ) = e_wﬁg, (e“pRg?)\) therefore if we denote ég,/\ = eing,)\ then Eg)\ satisfies the following
equation
LoRyr(t,x) = =V Lo Tyt ), (t,x)€ My (3.12)

Now using the expressions for ¢ and Ty from (3.9) and (3.10) respectively and assumptions on A and ¢, we
have that —e™ L4 ,T, € L*(Mr) and HeiwL'A’ngHLz(MT) < C, for some constant C' > 0 independent of A.
Hence using Lemma 2.3 together with above estimate for right hand side of (3.12), we conclude that there
exists ég,)\ € HY0,T; H-*(M)) N L?(0,T; H*(M)) solving (3.12) and it satisfies the following estimate
||§g,)\” L2(0,T;HL(M)) = C, for some constant C' > 0, independent of A\. Hence, we conclude that R, ) solves
the required equation and satisfies the desired estimate. This completes the proof of the Theorem. ]

3.2. Construction of exponentially decaying solutions. The aim of this subsection is to construct
the exponential decaying solutions to

. N | : _ .
EA,qu = ( — 0 — Z 7(8% - Aj)( |g|9]k(6:rk — Ay)) + Q>U =0, in Mr
iz Vil

taking the following form
u(t, ) = e~ ($p7¥)(t2) <Td(t, x) + Raa(t, x)) (3.13)

where ¢ is the same as in Theorem 2.1 and ¢, Ty will be constructed using the WKB construction in such
a way that the correction term Ry ) satisfies the following

(ot g (e,(wiw)RdA(t,x)) = Fi(t,x), (t,x) € My

for some Fy € L*(Mr) such that [|F)||;2(r,) < C, for some constant C' > 0 independent of A and Ry
satisfies ||Rd,x\”L2(0,T;H;(M)) < C||Fxl|L2(asy), for some constant C' > 0 not depending on A. To construct
these solutions, we first start with the construction of ¢ and Ty following the arguments used in Theorem
3.1. Denote by p := ¢ — i1, then one can check that the conjugated operator

n

L i=elLy e "= ep( — 0 — Z

1
PRVl

= 4)(V 1919 (9r, — A)) +7)e
is given by
Lh=Lh,+ <8tp . gjkajpakp> n (2gjkajpak — 29758, p Ay, + Agp> .
Using p = ¢ — it and ¢ = A\23%t + Az, we have
Lr=Lh, + (A%@Q 24 gikajwkw) n (2)\81 — 2ig7* 0,0 — 2AAy + 2ig7* Db Ay — A Y+2iNO P — iw) .
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Now we observe that u given by (3.13) solves £ v = 0 in My if and only if £} (efu) = 0 in Mr. Using
this, we see that IZg ) satisfies the following equation

LiRaA(t7) = —L1  Tult, 7) — ()\252 A2t gﬂ'kajww) Tu(t, z)
, } (3.14)
_ (mal — 2igT* 0,18y — 2AAy + 2ig7F Db Ay — iAG+2iNI Y — mw) Ty(t, ).

To get the estimate HRd,)\||L2(O,T;H)1\(M)) < C, for some constant C' > 0 independent of A, we choose 1 and
Ty satisfying the following equations

Oy =0, N2B% = N2+ 7% ;01 = 0 (3.15)
and

(2)\81 — 2ig* 0,08y, — 2AAL + 2ig™*Op Ay — ¢A9¢+2Mal¢) Ty(t,z) =0, (t,z) € My (3.16)

respectively. To solve equations (3.15) and (3.16) for ¢) and T,;, we again use the polar normal coordinates
(r,0) on (D, go) centered at yo € D as used in the proof of Theorem 3.1. For a fixed yg € D, we consider
the polar normal coordinates on D which are denoted by (r,6) and given by zo = exp, (rf), where r > 0
and 0 € Sy, (D) : {veTy,D: |vlg =1}, here T}, D denote the tangent space to D at yo € D. Then using
the Gauss lemma (see Lemma 15 in Chapter 9 of [53]) there exists a smooth positive definite matrix P(r, 6)
with det P(r,0) = b(r,0) such that the metric gp in the polar normal coordinates (7, 6), takes form given
by (3.7). Now since the points in M are denoted by (x1,,6) where (r,6) are polar normal coordinates in
(D, go), therefore after using the form of go given by (3.7), the metric g takes the form given by equation
(3.8) and using this, we observe that

b(x) = ()\\/1 - 52) dist(yo, ) = (A\/l - 52) r, (3.17)

solves equation (3.15) and
Ty(t,z1,7,0) = $(t)e" > Dp(r, 0) 71/ 41 (0) (3.18)

solves equation (3.16) where ¢ € C°(0,T), h € C>®(Sy,(D)) are arbitrary but fixed and ®a(t,z1,7,0)
satisfies the following

(alq>2 —i (\/1 - 52> ar%) n (iAl +V/1- ﬂ2AT> —0, (3.19)

A; and A, are components of A in z; and r coordinates respectively. Now if we use (3.17) and (3.18) in
equation (3.14) and repeating the arguments used in showing the estimate for Ry ) in Theorem 3.1, then
we get that there exists Ry, € HY(0,T; H-Y(M)) N L?(0,T; H*(M)) solving

c (a‘ﬁRd’k) (t,2) = -V LA Tt ), (t,z) € My (3.20)
and R, ) satisfies the following estimate

HRd,)\HLQ(O,T;H)l\(M) <C (3.21)

for some constant C' > 0 independent of A. Combining all these, we end up with proving the following
theorem.

Theorem 3.2. Let My, Lag and ¢ be as before. Let (D, go) be a simple manifold which is extension of
(Mo, go) in the sense that My C D and there exists a yo € D such that (z1,y0) ¢ M for all x1. Now if
(r,0) denote the polar normal coordinates on (D, go), (x1,7,6) denote the points in M and Ay and A, are
components of A in x1 and r coordinates respectively, then for X large enough the following equation

Lyt z)=0, (t,z)€ Mr
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has a solution taking the following form
v(t,z) = e~ (PmW)(B2) (Td(t, x1,7,0) + Ry (t, 21,7, 9)) (3.22)

where ¥, Ty are given by (3.17), (3.18) and Rq  satisfies (3.20) and (3.21).

4. DERIVATION OF INTEGRAL IDENTITY AND PROOF OF MAIN THEOREM

We use this section to derive an integral identity, which will be required to prove our main result. Later,
using the geometric optics solutions constructed in Section 3, we conclude the proof of Theorem 1.4. We
start by recalling

n

Lag=0= Y —— (0, + A3(0,2)) (¢ V10r, + Ault, ) + alt.2)

Gk=1 \/m

and

n

> leaxj ~ 4,(t.2)) (VIglg™ (0n, — Ax(t.2))) + 7t 2)

J,k=1

Ly,=—0

For [ =1,2, let AY and ¢; be as in Theorem 1.4. Further assume that v; is solution to the corresponding
IBVP for L4 ,, given by (1.1) when (A,q) = (A(l), q) for I = 1,2, that is, for [ = 1,2, we have

EA(l)mUl(t,:E) =0, (t,l‘) € Mr
w(0,z) = ¢(x), z€ M (4.1)
w(t,x) = f(t,z), (t,x) € X.

Then u := u; — us, satisfies the following IBVP with zero initial and boundary conditions

£A<1),q1u(t7x) = QUQ(ta:E)a (t,l‘) € MT
u(0,2) =0, z€ M (4.2)
u(t,z) =0, (t,z) €,

where Qua(t,z) = (|A(1)]3 - |A(2)|§) ug + 2 <A(1) — A, Vgu2>g + dg (A(l) - A(z)) uz + (@2 — q1)u2. To
simplify the notation, let us denote by §(t,z) := (41 —G2)(t, ) and A(t,z) := (A)1<j<n = (AN — AP (2, 2)
where §; := \A(i)lg + 5gA(i) — qi, for 1 = 1,2, then with these notations Qus becomes

Qua(t, =) = 2(A(t,x), Vyua(t,z)), + q(t, x)ua(t, ).

Now since Quy € L*(Mr) therefore using Theorem 1.43 in [23] we have that there exists a unique solution
u € L2(0,T; H*(M)) N HY(0,T; L*(M)) to (4.2) with d,u € L?(0,T; H'/?(X)). Now if v(t, x) is a solution
to the adjoint operator of £ 4q) ,,, given by

£j<4(1) U(t, .13) = O? (t,ZE) € MTn (43)

»q1
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then we observe that

(A gy g, = DA ,)(@s F)svlonrz) = Naw) g, w1 — Na@ g, u2,vlon)

= / <—u18t6 + (Vgur, Vo) + 2ur (AV, V1) g + (6,AM )u1 0 — [AD |20y o + qluﬁ) dV,dt
Mt

- / w1 (0, 2)5(0, )V,
M

— / (—Uzatﬂ + <VQU2, ngg + 2uo <A(2), vg@>g + (5gA(2))u25 — |A(2) |!2]’LL2§ + QQ’LLQW) dngt
Mt

+ /M us(0, 2)5(0, )V,

Using integration by parts with u|y = 0, u|t=o = 0 and v is solution to (4.3), we get

(Mactr g, — Aae o) (60 D) vlonss) = —2 /

(A(t, ), Vyus(t, ) yo(t, x) dVydt —/ q(t, x)ua(t,x)v(t, x) dVydt.
Mt

Mr
(4.4)
Multiplying equation (4.2) by @(t,z) and integrate it over Mp, we get

'CA(l),qlu(ta x)v(t, z) dVydt = 2/

(A(t, ), Vua(t, ) o(t, z) dV,dt —l—/ q(t, z)ua(t, z)o(t, x) dV,dt.
Mt

MT MT

Now use the integration by parts together with u|s = 0, ul;—o = 0, A|x; = 0 and the fact that v is a solution
to (4.3), to obtain the following identity

2/ (A(t,x), Vua(t, ) 0(t, x) dngt—i—/ q(t, x)u(t, z)v(t, x) dVydt
Mr Mr (4.5)

= _/gjkyjﬁxku(t,x)ﬁ(t,x) ngdt—i—/ w(T, z)v(T, x) dVy.
% M

From Equations (4.4) and (4.5), we have

(Aaw g, = Aa@ g,) (@, ), vlonz) = /Egjkvj‘axw(t,fc)v(uw) ngdt—/M w(T, 2)o(T, ) dVy.

Using (1.8), we get dyuls;_,, =0 and ui=r = 0. Therefore, Equation (4.5) becomes

2/ (A(t, ), Vgus(t, ) (t, 2) dngt+/ q(t, x)us(t, z)o(t, x) dVydt
MT MT
| (4.6)
= —/ ¢7* 00, u(t, )0 (t, ) dSydt.
Z\Z—,e/Q

Let us define Ji, Js and J3 by

Jp = 2/ (A(t, ),V gua(t, ) 5(t, 2) dV,dt, Jo ::/ q(t, zx)ua(t, x)v(t, z) dVydt and
MT MT

J3 = —/ Oyu(t, )v(t, x) dSydt.
2\27,6/2

With these notations (4.6) becomes
J1+ Jy = Js. (4.7)

Our next aim is to substitute the exponentially growing and decaying solutions constructed in section 3,
for ug and v respectively, in each term of equation (4.7). Recall that ug satisfies

EA(Q)’(DUQ = O, in MT
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and v satisfies

E*

A(l)’qlv = O, in MT

therefore we choose the expressions for solutions us and v from (3.2) and (3.22) respectively, substitute in
each term of (4.7). We start with the following calculations

(Att2), Vgus(t,)) 5= ((Alt.2). Vo (o +i0) ) Tylt,w) +(Al12), Vg (p+10) ) Rya(t,)
<A VT, (t > <A VyRoa(t ac)>g) (Td(t,x) —I—Rd7,\(t,w)).
= (A(t2), 9y (9 +i0) ) Tylt)Tult,2) + (Alt,2), Vo (o4 ) ) Tyt 2)Raa(t,)

+ (Al,2), Vg (p i) ) Boalt,n)Talt, ) + (Al 2)Vy (o4 ) ) Ryt x) Ralta)

+ (A, VyTy(ta > Tult,@) + (A, VyTy(tx >9Rd7,\(t,x)
<A VyRoa(t,z > Ty(t,a +<A Vo Ryt )> Ran(t,z)
g
= (Alt,2), Vo (o + i) ) Tylt,0)Talt,) + Za(t,).
Similarly, we see that
q(t, 2)ug(t, 2)o(t, z) = Gt,2) (TyTy(t, ) + TyRg \(t, ) + TyRax(t, z) + Rax(t, 2)Rya(t, x)) 1= Zo(t, x).

Using the above expressions in definitions of J; and Js, we get

Tit Js =2 /M (Alt2),9, (4 i0) ) Ty(t.)Talt.) dViyie

+ 2/ Zi(t,z) dngt—i-/ Zy(t,z) dVydt.
MT MT
Now using the expression for v from (3.22) in the expression of J3, we obtain

J3 = —/ e~ PG, u(t, ) Ty(t, x) dSgdt —/ e*(‘pﬂw)&,u(t,x)RdM\(t,w) dS,dt.
E\E €/2 Z\27,6/2

We use the boundary Carleman estimate given in Theorem 2.1 and follow the arguments used in deriving
Lemma 5.1 in [49] to get the following estimate for J3

|J3] < CAY2, for some constant C' > 0, independent of . (4.9)

Using (4.8) together with the estimate on J3 given by (4.9) in (4.7), we get

’ / Vg (o + z¢)> w(t, o) Ty(t,z) dV, dt’ ‘2 Zi(t,x) dVydt + Zy(t,x) dngt‘ + |J5]
My My Mr

< C (121l L2(vary + I122]l 2 (aar) + 15]) -

Let (z1,r,0) be the polar normal coordinate on (M, g) and A; and A, be components of A in 27 and r
coordinates respectively as in Theorem 3.1. Then, the above estimate can be rewritten as

T+(y019) - - _
/// / <A1+i\/1—BZAT)Tg(t,xl,r,G)Td(t,xl,r,G)b(r,G)l/erde:nldt
R JR JS, M Jo

(121l L2aer) + 1122l 20ty + 1931)

(4.10)

Q

=
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where we used the fact dV, = b(r, 0)'/2dx1drdf in polar normal coordinates on (M,g) and 7 (yo,0) is
length of the geodesic in M, starting at yp in the direction of . After using the estimates on Ry ) and
R, » together with the expressions for T;; and Ty from Theorems 3.1 and 3.2, we get that

1Zill 2(apy < €, for i = 1,2 and constant C' > 0 independent of .
Using this estimate along with equation (4.9) in equation (4.10) and taking A — oo, we get

TJr(yO’e) ~ - . _ T .
/ / / / <A1+z’\/1—,6’2Ar) (6(0))? ¢ (VIZP) 21 mar t0100) (1(0))? drdfdaydt = 0,
R JR JS, Mo Jo

where ®(t,z1,7,0) := (®1 — ®2) (t,21,7,6) with ®; and P, satisfying equations (3.11) and (3.19) respec-
tively. As this relation is true for all cutoff functions ¢ € C2°(0,T') therefore we get

T+(y076) -~ ~ . /1_ T .
/ / / (Al +iy/1— BQAT) (t,zq,, H)em( ! ’62) Lemhr i ®tar0) (p(9))? drdfdz, = 0,
R JS, My Jo

for all t € (0,7) and h € C*°(Sy,(D)). Next, we vary h € C*°(Sy, (D)) in the above equation to get

T+(y010) - - . /1_ x .
/ / <A1 +iy/1— ﬂQAr) (t,x1,m, G)ew< ! ’32> Lemhr i@tz 0) drdy) =0 (4.11)
R JO

for all t € (0,7) and for all 6.

From here on, uniqueness of the convection term can be obtained by following exactly the same arguments
used in [29]. However, we prefer to give a sketch of the proof for the sake of completeness; please refer [29,
Section 6] for a detailed discussion.

Let p = (/1 — 82)x1 + ir, then ®(¢,z1,7,0) := ((I)l — 52) (t,z1,r,0) satisfies the following equation:
0P i ~ ~
— +— (A v/ 1—B24,) =0. 4.12
5 oo (M iVI- ) (4.12)

For fixed 0, define Qy = {(z1,7) € R? : (21,7,0) € M}. Then the identity (4.11) can be rewritten as
follows:

d .
// 2iy/1 — BQaieZ“pe@ dp Ndp =0,
Qp dp
which reduces to

/ e et dp = 0.
0

Now following [28, 29], we find that there exists a non-vanishing holomorphic function F' € C(£y) such
that e'®|pq, = Flaq, and its holomorphic logarithm satisfies (please see [28, Lemma 5.1]for more details)

logFF=1i® on 0.

Since log F' is a holomorphic function on gy, we get

/ i®e™ dp = 0.
O

// ia—?ei“p dp Ndp = 0.
o, 0p

Using equation (4.12), we obtain the following identity

// (Al i1 52&) ((VImFa4r) 18 1~ 0. for all @ and for all £,
Qg

From Stokes’ formula, we have
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Let 7y,,,6 be the geodesic starting from yp and in the direction 6. The above identity can be rewritten as

[ [£Omat) +ivI= Balipa(r)] dr =0,

with
n

fa) = [ VI Ay (2, o) dey and a(a:’>=2< VI A (w1, ) dxl) da’.

Jj=2 _

@

By varying yo on 9D in Theorem 3.1 and using [29, Theorem 7.1], we obtain f = —pup (for p small) and
o= \/:de for p € C*°(D) with p|sp = 0. With these notations, we can simplify « as follows:

ZJE;‘F(AJ> (M 1_ﬁ2 d‘TJ Z\/ﬁ ]p

In the above expression, F(-) represents the Fourier transform with respect to z;1. The analyticity of the
Fourier transform gives the following relation

A —0;A, =0, jk=2,...,n

For 2 < j < n, we have

—pdip =0, f = /e”‘\/ 1*52’”1@211(3:1,3;’) dri, using the definition of f
Oray = ipn/1 — f2a; + /ei“V 1_ﬂ2x181/~1j(x1, 2') dry =0, as a; depends on 2’ only.

Use ipy/1 — f2a; = pd;p in the above relation to get

ei“v 1-p%z1 (8jf~11 - 8121]-) (l‘l,CL‘,) dl‘l =0.
Thus, we have dA = 0 in My, and consequently, we obtain that there exists a W € W02 °°(Mr) such that
A(t,x) = VU (t,x) for (t,z) € Mp. This proves the required uniqueness for the convection term. Next,
we prove the uniqueness of density coefficient q. To prove this, we replace the pair (A(l), q1) by (A(3), q3),

by taking A®) = A?) in My, where A®)(t,2) = AW (t,2) — V,U(t,x) and g3(t,z) = q1(t,2) — V(¢ x).
From Proposition 1.3 and Equation (1.8), we get Ay 4, = Mg 4, Using this in Equation (4.6), we get

/ (g2 — q3)(t, 2)ua(t, )0 (t, z) dV,ydt = —/ gjkujaxku(t,x)ﬁ(t,a:) dS,dt,
Mr E\E_ )2

Again, we use the explicit expressions of us and v from Theorems 3.1 and 3.2 and take A\ — oo together
with the estimate || 22/ 2(ps,) < C/A, for some constant C' > 0, independent of A, to end up with getting

7+ (0,0) , ,
/ / / / q(t,wl,rﬁ)(¢(t))2ez“(m)“e*“Te“’<m"‘=9> (h(8))? dtdzdrd = 0,
R Sy Mo

where q(t,z1,7,0) = (g2 — q3) (t,x1,7,0) is assumed to be zero outside Mp. Finally by varying ¢ €
C(0,T), h € C®(Sy,(D)) and taking ® = 0 which is possible since A®) = A®) in My and if ®; solves
(3.11) then we can choose ®3 = ®; which solves (3.19), we get that

7+ (y0,0) Y
/ / q(t,xy,m, Q)ew( 1_52x1+w) dzidr =0, for all § € Sy (D), B € (\}57 1> and t € (0,7).
R JO
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Now, using the arguments from [29, Section 6], we can prove the required uniqueness of density coefficient.
Here, we provide a brief outline of the proof for completeness. We rewrite the above equation as

/ e M ( ehV l_ﬁ%lq(t,azl,r, 0) dxl) dr=20
0 R

N~

F(yp,0(r))
= / F(Vyo,0(r)) exp [—/ 1 ds] dr =0
0 0

for all geodesics v, ¢ starting from the point yo. By varying yo such that (x1,yo) ¢ M for all x; and using
the injectivity of the attenuated geodesic ray transform (with attenuation —u) from [29, Theorem 7.1], we
get the following for sufficiently small p

eV lfﬁleq(t,xl,r, 0) dry =0, for all r,0 and t.
R
Since the above identity is the Fourier transform of ¢ with respect to z1; therefore, we have ¢ = 0 (that
is, g2 = ¢q3) in Mp. Recall g3 = qi(t,x) — 0¥ (¢, z), hence, we obtain ¢ (t,z) — q2(t,z) = 0,V (¢,z) for
(t,z) € Mr, which completes the proof of the main theorem.
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